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Abstract

We study an economy subject to aggregate real and liquidity shocks. We
use this environment to study how banks, asset markets, and a central bank
interact to achieve efficient allocations. Economies where one institution
is missing do not, by construction, achieve efficient allocations. We
analyse how interest rates and asset prices depend on the structure of
the economy and the presence of active or passive policies by the central
bank. We determine a simple lender of last resort policy which allows for
efficient equilibrium allocations and relate the notion of liquidity which
we adopted to the one used in other studies.
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1 Introduction

We present a model with a financial structure composed by banks, securities markets, and a

central bank. We study how these institutions interact to achieve efficient allocations of risk, and

how their interaction affects interest rates and asset prices. Our analysis focuses in particular on the

distinction between liquidity risk and solvency shocks, and identifies the monetary policy conduct

which implements a Pareto optimal outcome in the presence of these two kinds of risks.

Financial systems in modern economies include a variety of institutions. They all rely, albeit

to different extent, on banks and security markets to transfer resources from savers to investors,

and empirical evidence suggests that banks and markets distinctively contribute to the activity of

the economy.1 In addition, all financial systems are characterized by the presence of outside (fiat)

money, and a central bank which manages the quantity of money to influence the cost of credit.

Finally, all financial systems, besides transferring resources from savers to investors, provide in-

surance against different kinds of risks emerging from both the asset side and the liability side of

the balance sheets of intermediaries.

In general, economic agents may face two kinds of risk. One is the typical default risk associated

with financing risky projects; these projects generate an uncertain real payoff in the future. There is

also another kind of risk. Given the different needs and incentives of savers and borrowers, the time

profile of their demand for financial services also differs. Intermediaries then engage in maturity

transformation and expose themselves to what is referred to as liquidity risk, which relates to the

lack of certainty with respect to the distribution of resources over a certain period of time rather

than the total amount of resources available at a point in time.2 One of the main manifestations

of liquidity risk is the shift of the composition of financial portfolios towards fiat money, the most

commonly accepted instrument for purchasing goods and services. Thus, the institution managing

the supply of fiat money plays a fundamental role in hedging aggregate liquidity risk.

The analysis of the issues discussed in the previous paragraph requires a model that presents

1 See Levine (1997) and La Porta et al. (1998).
2 We discuss this definition in Section 6. Empirically differentiating between these two types of shocks or risks
is clearly very difficult. See the discussion in section 5 of Rajan (2001) and in Lindgreen et al. (1999). In a completely
unrelated framework Covitz and Downing (2002) intend to differentiate these two risk concepts to explain yield spreads
in the corporate bond market.
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a specific description of a financial structure, which must contain both notions of liquidity and

real risk. At the same time, the notion of liquidity risk must be compatible with the idea that

money, once a store of value, becomes also a financial asset representative of liquidity needs and

susceptible to liquidity risk. As a vehicle, this paper develops an extension to the model originally

presented in Champ, Smith, and Williamson (1996), augmented with the presence of real risk. We

consider an overlapping generations economy in which at each date the population is partitioned

into two groups of two-period-lived agents: lenders and borrowers (or entrepreneurs). Agents are

born at either of two identical locations (islands). At the end of each period, a fraction of lenders

born in one island is relocated to the other island. Spatial separation and limited communication

prevent trade across islands, and relocated agentsmust carry (fiat) currency.3 This friction generates

a stochastic demand for real balances (liquidity).

In this model, the role of banks is to provide insurance to depositors facing liquidity shocks that

generate stochastic withdrawals at the end of each period. For this reason, banks hold precautionary

reserves of real balances, which can be dominated in rate of return. Banks also make loans to

borrowers, who are of two types in each island. We think of these types as residing in two different

regions of the island. Each borrower is endowed with a stochastic investment project, and with

given probability borrowers of each type face an unsuccessful outcome. We assume that investment

projects are negatively correlated across types (and perfectly correlated within types). In addition,

we assume that banks in each region can only lend to, and accept deposit from, agents located

in the same region, and therefore are not allowed to diversify. Following Allen and Gale (2004)

we also consider a version of this economy with a complete set of Arrow securities on the set of

states of nature generated by shocks on the investment projects, in which only banks are allowed

to trade.4 Banks face solvency risk because they cannot perfectly diversify across the investment

outcomes of the two regions. Hence, they have an incentive to trade risk with other banks in the

Arrow securities market.

We study this environment in three different settings. The first version excludes both the Arrow

securities markets and the central bank. In this case we show that real shocks and liquidity shocks

interact by affecting banks’ precautionary demand for real balances and the probability of liquidity

shortages in each region. In particular, this probability is shown to be zero in the region that
3 This part of the model is as in Townsend (1987).
4 We also follow Allen and Gale (2004) in restricting market participation: individual depositors are not allowed
to trade in contingent claims.
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is affected by the negative realization of the entrepreneur’s shock, while positive in the other.

The reason behind this result is that cash reserves, independently of their liquidity properties,

become a fundamental asset to repay all depositors, without regard to their relocation status, when

entrepreneurs default.

The second version of the model introduces Arrow securities and lets banks trade these assets

to share risk. We study how solvency and liquidity shocks interact in this setting. We show how

banks’ demand for precautionary reserves and the presence of liquidity shocks affect asset prices

in equilibrium. In particular, numerical examples show that the probability distribution over the

solvency shocks affects the way in which equilibrium asset prices depend on the distribution of

liquidity shocks. The examples suggest that when investment outcome is more likely to be suc-

cessful in one region, then the relative price of the Arrow security that pays off if the investment is

successful in that region is higher the more concentrated the probability distribution over liquidity

shocks is towards high demand for liquidity. Thus, the insurance provided by Arrow securities

against solvency shocks is less valued when cash withdrawals are more likely.

The third version of the model introduces a central bank that makes one-period liquidity loans to

(private) banks in addition to Arrow securities markets. We show that in this case the equilibrium

outcome is the same that obtains in an economy with complete markets and a safe asset. Only in

this setting is the equilibrium Pareto optimal. Therefore, banks, financial markets, and the central

bank contribute distinctively to the implementation of a Pareto-efficient equilibrium. Commercial

banks provide insurance to the idiosyncratic component of the liquidity shocks. Arrow securities

allow to share risk arising from investment projects. Finally, the central bank provides insurance

against the aggregate component of the liquidity shocks, given a suitable lender-of-last-resort pol-

icy. Even though the three institutions by construction make distinct contributions to risk sharing,

they jointly determine the equilibrium outcome.

The literature on the role of banks and financial markets, and in general financial systems, is

very extensive.5 To our knowledge, Allen and Gale (2004) is the first paper presenting a general

equilibrium model including both banks and security markets with two types of shocks (which

may be interpreted as liquidity and solvency shocks). They show that financial intermediaries

and complete security markets together imply constrained Pareto-efficient allocations as long as

investors cannot trade in those securities. With incomplete financial markets and idiosyncratic

5 For a recent survey see, for example, Gorton and Winton (2003).
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liquidity shocks, financial regulation in the form of a minimum amount of liquidity may improve

efficiency in their paper, provided that the relative-risk-aversion coefficient is above unity. Unlike

these results, our model suggests that, in the presence of an aggregate component of the liquidity

shock, such liquidity regulation is not relevant for implementing efficient risk sharing, and states

an essential need of a lender of last resort to reach a Pareto-efficient allocation.6

Gale (2005) presents a two-period model with financial markets but without banks. The model

assumes cash-in-advance constraints not only for trading in goods but also for trading in assets.

Gale (2005) demonstrates that asset prices are determined in part by the supply of liquidity. Our

model, on the other hand, shows that not only money supply matters, but also the demand for

liquidity influences equilibrium asset prices when there is no central bank acting as a lender of last

resort. One reason for this difference is the absence of an aggregate component of the liquidity

shock, which is present in our paper, in the example of section 4.4 of Gale (2005).

Other papers also study some aspects of the differential roles of banks and financial markets

which are complementary to our main argument. Allen and Gale (2000, chapter 15) study how

markets and banks collect information in different ways and hence provide different services. Di-

amond and Rajan (2001) and Diamond (1997) make a distinction about the roles of markets and

banks which is different from the one present in our analysis. They point to different type of

commitments that are involved in market contracts and bank based contracts (deposits), and the

resulting incentives for banks, firms, and depositors.

Finally, the literature on liquidity provision is also related to our analysis. Allen and Gale (1997)

show that banks produce a Pareto-optimal allocation while markets do not. A similar conclusion,

albeit for different reasons, is reached by Holmstrom and Tirole (1998) when firms face idiosyn-

cratic liquidity shocks. In the presence of an aggregate liquidity shock Holmstrom and Tirole

(1998) show that government debt is needed as a tool for optimal liquidity provision. The role that

public debt plays in Holmstrom and Tirole (1998) is similar to the role that the central bank plays

in our model.

Unlike the papers cited above, our model introduces fiat money explicitly, with banks offering

state-contingent deposit contracts that are denominated in currency. The preference shock that hits

certain consumers does not take the form of an urgency to consume, but the urgency to hold a liquid

6 The subsequent paper, Allen and Gale (2006), discusses the relationship between liquid investment and volatility of
asset prices in a special case of Allen and Gale (2004) with no solvency shocks. See section 6 for further discussion.
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asset, that is, fiat money. We want to study the role of banks and markets at the aggregate level,

and this formulation seems more appropriate for this purpose than past models. From a historical

perspective, central banks have been introduced (in part) to bear the task of moderating the risk

for banks originating from the liability side of their balance sheets (mainly, liquidity shortages).

Financial markets, on the other hand, help intermediaries moderating the risks originating from

the asset side of their balance sheet. These are the features of the financial system that we wish to

capture.

Section 2 presents the main elements of the general model. Section 3 analyzes the first version

of the model in which only banks are present. Section 4 adds to the model in section 3 two Arrow

securities, one for each project shock. Section 5 adds to the former model a central bank providing

liquidity in fiat money against the realization of liquidity and solvency shocks. Section 6 presents

the discussion of the main results of this model, specially related to the literature mentioned above.

Finally section 7 concludes.

2 The model

We study an economy populated by a sequence of two-period lived overlapping generations

and an initial old generation. There is a unique consumption good in the economy. There are two

separate but identical islands, denoted A and B, and two regions in each island, called region 1

and region 2.7 In every period t = 0, 1, 2, ..., a new generation in each island and region is born.

Each generation consists of two groups, each of a continuum of agents of unit mass. One group

consists of risk neutral entrepreneurs, who invest when young and value consumption only when

old. The second group consists of a continuum of risk averse lenders who also value consumption

only when old. At time t = 0 there is an initial old generation of lenders each endowed with
M
2
units of fiat money. We assume that goods cannot be transported between islands, and limited

communication also prevents the transfer of assets. Only money is universally recognizable and

can be transferred between islands.8

2.1 Entrepreneurs

Each entrepreneur has access to a (risky) technology, and has no endowment. Investment of k
7 An alternative interpretation is to think about these as sectors.
8 For a more detailed description of a related environment see Antinolfi, Huybens and Keister (2001), and Champ,
Smith, and Williamson (1996).
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units of the consumption good at time t yields g (k) units at t + 1 with positive probability, or

else 0. We assume that g (k) is strictly increasing, strictly concave, C2, and satisfies the standard

Inada conditions. In addition, we assume that the real shocks which affect investment projects

are negatively correlated between the two regions: either entrepreneurs in region 1 get g (k) and

entrepreneurs in region 2 get 0, or the converse is true. We indicate with s1 and s2 the states of

nature in which the real shock is favorable to entrepreneurs in region 1 and 2 respectively. We let

η (sj) be the probability that the investment is successful only in region j = 1, 2. Let S ≡ {s1, s2} .
Because entrepreneurs have no endowment, they need to borrow to invest. In case of successful

projects, entrepreneurs in region j pay back the amount they borrowed one period earlier with

interest. We denote with Rj
t the gross competitive interest rate that the entrepreneur in region

j = 1, 2 pays in the favorable state.

An entrepreneur in region j takes as given borrowing costs and solves the following expected

income maximization problem:

max
kjt

η (sj)
£
g
¡
kjt
¢−Rj

tk
j
t

¤
.

The first-order condition for this problem is

g0
¡
kjt
¢
= Rj

t .

We can express the demand for funds by an entrepreneur of region j as

kj∗t = ψ
¡
Rj
t

¢ ≡ (g0)−1 ¡Rj
t

¢
.

2.2 Lenders

All lenders receive an endowment vector (ω1, ω2) = (x, 0) , with x > 0. At the end of each

period a fraction πt of young agents in each island is relocated to a different island (we will refer

to them as movers). The remaining agents stay in the island until old, and will be referred to as

non movers. The fraction πt represents the size of the aggregate liquidity shock in each island,

and determines the existence of banks in a similar fashion as in Diamond and Dybvig (1983). In

addition, because money is the only asset that can be transported between islands, the random

liquidity shock determines a transactions role for money as in Townsend (1987). We assume
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that πt is drawn from a distribution function F (πt) , which is assumed to be twice continuously

differentiable with density f (πt) . Moreover, we assume that lenders born in a certain region can

only deposit their endowment with banks of the same region.

Lenders have preferences given by U (c1, c2) = ln c2, where c2 represents consumption of an

agent when old. Because lenders face the possibility of a liquidity shock, they deposit their endow-

ment in a local bank. Banks promise a rate of return to depositors contingent on three factors: the

state of nature prevailing in the region where the bank is located; the depositor’s relocation status;

and finally the fraction of total population relocated.

2.3 Banks

Banks take deposits, decide their portfolio of loans and reserves, announce rates of return on

deposits, and trade in asset markets. We assume perfect competition in the banking sector: banks

act as Nash competitors and maximize the expected utility of depositors. Both liquidity and real

shocks are realized at the same instant.

We assume that banks in each region can lend only to entrepreneurs of the same region. Thus,

banks are not allowed to perfectly diversify credit risk. We maintain this assumption for simplicity,

but it is possible to make this feature of the model endogenous, for example by introducing a cost

function for the intermediation process that would limit the number of entrepreneurs whom a bank

finds profitable to lend to.9

We study the problem of a bank in three economies. In the first scenario, the bank faces only

the problem of determining its demand for monetary reserves. In the second scenario, we open

a market for contingent claims where banks in different regions (but not different islands) are

allowed to trade in the contingent claim market. Finally, we add a central bank that provides an

elastic currency to the economy through discount window loans.

3 The economy without asset markets or a central bank

In this section banks take deposits, choose their portfolio of loans and reserves, and announce

rates of return on deposits. Their problem is to choose the fraction of deposits to invest in real

balances to maximize the expected utility of depositors. Let γjt be the fraction of deposits invested

in real balances, and let βjt (s, π) be the fraction of cash balances that a bank of region j uses to pay

9 For analysis in which the bank size is determined endogenously see Krasa and Villamil (1992 and 1994).

8



relocated depositors at the end of period t. We denote rmt (s, π) to be the real return on deposits

to a mover when the aggregate state is (s, π). Likewise, we indicate with rt (s, π) the real rate of

return on deposits promised to a lender who does not leave the island. The first constraint that a

bank faces states that it can only use real balances to satisfy the demand for withdrawals of the π

relocated depositors. Formally,

πrmj
t (s, π) 5 γjtβ

j
t (s, π)

pt
pt+1

, (1)

where pt denotes the price of the consumption good in terms of fiat money. Banks use the remain-

ing resources, possible remaining real balances and return on loans, to repay deposits and provide

the promised return to the 1−π depositors who are not relocated to the other island. This constraint
is given by

(1− π) rjt (s, π) 5 γjt
¡
1− βjt (s, π)

¢ pt
pt+1

+
¡
1− γjt

¢
Rj
t (s) , (2)

where Rj
t (s) = Rj

t if s = sj, and 0 otherwise, with j = 1, 2. The problem of a bank is to choose

rmj
t (s, π) and rjt (s, π) to maximize the utility of depositors, taking the amount deposited, x, as

given. The problem is:

max
γj ,βj ,rm,j ,rj

X
s∈S

η (s)

Z 1

0

£
π ln rmj

t (s, π)x+ (1− π) ln rjt (s, π)x
¤
f (π) dπ

subject to (1) and (2) in addition to the non-negativity constraints 0 ≤ β ≤ 1 and 0 ≤ γ ≤ 1.
Substituting the constraints (1) and (2), which will hold with equality in equilibrium, and deleting

irrelevant constants, the problem can be equivalently written as

max
γj ,βj(s,π)

X
s∈S

η (s)

Z 1

0

£
π ln γjtβ

j
t (s, π)+

(1− π) ln

µ
γjt
¡
1− βjt (s, π)

¢ pt
pt+1

+
¡
1− γjt

¢
Rj
t (s)

¶¸
f (π) dπ

subject to 0 ≤ βj (s, π) ≤ 1 and 0 ≤ γj ≤ 1, and where η (s1) ≡ η and η (s2) ≡ 1− η. Note that

βj, the fraction of real balances used to repay relocated depositors, is chosen after the shocks are

observed. Therefore, the optimal value of βj is contingent of the choice of γj, the total amount of

real balances available. On the other hand, the optimal amount of real balances is chosen before the

observation of the realization of the shocks, and cannot be contingent on their value. The solution

to the bank’s problem is given by
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βjt (s, π) =


π γjt

pt
pt+1

+(1−γjt)Rj
t (s)

γjt
pt

pt+1

; π < π∗j
¡
γjt , s

¢
1; π∗j

¡
γjt , s

¢ ≤ π < 1

where

π∗j
¡
γjt , s

¢ ≡ γjt
pt
pt+1

γjt
pt
pt+1

+
¡
1− γjt

¢
Rj
t (s)

.

In practice, π∗j indicates the critical value of the liquidity shock such that a bank in region j exhausts

the whole amount of real balances held as reserves. For shocks higher than π∗j banks in region j

face a liquidity shortage, and movers and non-movers receive different returns on their deposits.

It is immediate that, when Rj
t (s) = 0, then π∗j

¡
γjt , s

¢
= 1. The reason behind this property

is that real balances are the only source of funds for banks when the real shock is unfavorable

to borrowers in that region, and in these circumstances the bank will never give all its currency

reserves to movers. Hence, fiat money shortages can only occur in banks belonging to the region

with the favorable realization of the solvency shock. The optimal choice of real balances is given

by

γjt = 1− η (sj)

Z 1

π∗(γjt ,sj)
F (π) dπ.

Because of the aggregate nature of the liquidity shock, a bank provides partial liquidity insurance

to its depositors. The rate of return on money is lower than the expected return on loans, and at the

margin banks balance the insurance benefit of holding currency reserves and their opportunity cost

due to the higher expected returns on loans to entrepreneurs. Notice that cash reserves are used

by the bank to provide insurance to both movers and non-movers, who do not suffer the liquidity

preference shock. In other words, the presence of credit risk provides an additional role for real

balances. The presence of credit risk makes money an attractive asset because money has value

in every future state of the world. Lack of credit risk would mean that η (sj) = 1, and γjt =

1− R 1
π∗(γjt ,sj)

F (π) dπ, which is the same result obtained in Champ, Smith and Williamson (1996)

and Antinolfi, Huybens and Keister (2001) when the interest rate on bank loans is deterministic.

3.1 Equilibrium

In equilibrium, the money and credit markets have to clear in each island. The real money supply
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in each period is M
pt
, therefore the market clearing condition on the money market is given by

M

pt
=
¡
γ1t + γ2t

¢
x, (3)

where superscripts indicate the demand for real balances by banks in region 1 and 2 respectively.

Equation (3) implies that
pt
pt+1

=

¡
γ1t+1 + γ2t+1

¢
(γ1t + γ2t )

.

Credit markets in region 1 and 2 also must clear; demand and supply of credit must be equal, that

is in region j = 1, 2 we must have

ψ
¡
Rj
t

¢
=
¡
1− γjt

¢
x. (4)

Under the assumption that f (k) = kα, 0 < α < 1 for all j, we have ψ
¡
Rj
t

¢
=
³

α

Rj
t

´ 1
1−α

. In

equilibrium: µ
α

Rj
t

¶ 1
1−α

=
¡
1− γjt

¢
x.

Letting φ ≡ α
x1−α , it follows that

¡
1− γjt

¢
Rt = φ

¡
1− γjt

¢α
. Therefore in equilibrium

γjt = 1− η (sj)

Z 1
γ
j
t

γ1t+γ
2
t
(γ1t+1+γ2t+1)

γ
j
t

γ1t+γ
2
t
(γ1t+1+γ2t+1)+φ(1−γ

j
t)

α

F (π) dπ. (5)

When both regions are considered, the resulting two-dimensional, first-order system of difference

equations defines the equilibrium dynamics for the economy.

3.1.1 Stationary equilibrium in the economy with banks

We focus our analysis on steady-state equilibria. In steady state equation (5) becomes

γj = 1− η (sj)

Z 1

γj

γj+φ(1−γj)α
F (π) dπ

for j = 1, 2. Notice that in the steady state equilibrium conditions in the two regions become

independent from each other. We state the following:

Proposition 1 There exists a unique (γ1∗, γ2∗) ∈ (0, 1)2 which satisfies both equilibrium equa-
tions, hence the steady-state equilibrium is unique.
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Proof. See Appendix A.1.

It is not difficult to see that this equilibrium allocation is never Pareto optimal.10 Intuitively,

optimal risk-sharing dictates that a bank equalize the rate of return for both movers and non-

movers. In fact, the economy does not face a random amount of resources relative to the liquidity

shock. However, banks cannot adjust the amount of currency holdings after observing the liquidity

shock. A bank must choose monetary reserves before observing the liquidity shock, even though

ex-post, in the state of nature in which borrowers repay their loans with interest, a bank would be

able to borrow fiat currency against its portfolio of loans, for example, from a central bank. This

is the role that the central bank will play. Before introducing the central bank, however, we allow

banks to trade contingent claims to trade credit risk on a given island.

4 The economy with asset markets

In this section we consider the problem of the bank and the equilibrium of the economy when

banks can trade credit risk in asset markets. We model asset markets by opening markets for Arrow

securities (depending on solvency shocks, s) in each island, in which banks can trade immediately

after young agents make their deposits. Arrow securities are not a perfect representation of asset

markets. For example, Arrow securities markets are self-financing. However, they allow like actual

markets the exchange of risk through trade of goods across states of nature. Allen and Gale (2004)

follow the same approach in modeling asset markets.

Let θjt (s) denote the quantity of Arrow securities traded by a bank in region j at the beginning

of time t, which pay one unit of the consumption good in state s ∈ S at time t + 1. Arrow

securities are traded before the observation of the shocks, and the determination of γ0s and θ0s is

simultaneous. As in the previous sections, the fraction of real balance reserves devoted to repay

movers is determined after the observation of the shocks. The constraints that a bank faces in this

case are:

πrm (s, π) = γjtβ
j
t (s, π)

pt
pt+1

, (6)

and

(1− π) r (s, π) = γjt
¡
1− βjt (s, π)

¢ pt
pt+1

+
¡
1− γjt

¢
Rj
t (s) + θjt (s) . (7)

10 Classic references are Balasko and Shell [7], [8]; see Champ, Smith and Williamson (1996) for discussion in
a setting similar to ours.
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The difference from the previous section is the presence of the term representing the Arrow security

obligation of the bank in state s. Intuitively, the bank now has an additional tool that can be used

to transfer consumption across states of nature for depositors who are not relocated to a different

island. In this sense the value of monetary reserves is affected because the bank can cover some of

the credit risk it is facing through asset markets. The problem of the bank in this case is

max
γj ,βj ,rm,j ,rj

ln
X
s∈S

η (s)

Z 1

0

£
π ln rmj

t (s, π) d+ (1− π) ln rjt (s, π) d
¤
f (π) dπ

subject to (6) and (7), the usual non-negativity constraints, and

q1tθ
j
t (s1) + q2tθ

j
t (s2) = 0,

where q1 and q2 are the prices of the Arrow securities that pay in state s1 and s2 respectively.

Normalizing,

θjt (s1) + qtθ
j
t (s2) = 0, (8)

where qt ≡ q2t
q1t
is the relative price of Arrow securities. Equation (8) is the self-financing constraint

typical of Arrow securities trading. Conceptually, the procedure to solve bank’s problem remains

the same as in the previous section. We solve the problem of the bank by first determining the

optimal liquidation of real balance reserves. The solution to this problem sets

βjt (s, π) =


π γjt

pt
pt+1

+(1−γjt)Rj
t (s)+θ

j(s)

γjt
pt

pt+1

; π < π∗j
¡
γjt , s

¢
1; π∗j

¡
γjt , s

¢ ≤ π < 1

(9)

where the critical values of the liquidity shocks, depending on the state s, are given by

π∗j (γt, s) =
γjt

pt
pt+1h

γjt
pt
pt+1

+
¡
1− γjt

¢
R (s) + θj (s)

i . (10)

Having determined the liquidation policy of the bank once the state of the economy is realized, we

need to determine the (ex-ante) choices of γjt , θ
j
t (s1) , and θ

j
t (s2) .

Let us solve the case of bank j = 1 (the case of bank 2 is symmetric). Recall that η (s1) = η
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and η (s2) = 1− η. Using the optimal values for β0s we can formulate this problem as

max
γ1t ,θ1,θ2

η

π∗(s1)Z
0

log

·
γ1t

pt
pt+1

+
¡
1− γ1t

¢
R (s1) + θ1t (s1)

¸
f (π) dπ +

+η

1Z
π∗(s1)

©
π log γ1t + (1− π) log

£¡
1− γ1t

¢
R (s1) + θ1t (s1)

¤ª
f (π) dπ+

+(1− η)

π∗(s2)Z
0

log

·
γ1t

pt
pt+1

+ θ1t (s2)

¸
f (π) dπ +

+(1− η)

1Z
π∗(s2)

£
π log γ1t + (1− π) log θ1t (s2)

¤
f (π) dπ

subject to:

θ11t + qtθ
1
2t = 0,

where θ1it ≡ θ1t (si) , i = 1, 2. The solution to the problem of the bank in region 1 gives

γ1t = 1− η

1Z
π∗1(s1)

F (π) dπ − (1− η)

1Z
π∗1(s2)

F (π) dπ,

and

θ1t (s2) =
R1t (s1)

qt
(1− η)

1Z
π∗1(s2)

F (π) dπ.

The symmetric solution to the problem of the bank in region 2 gives

γ2t = 1− η

1Z
π∗2(s1)

F (π) dπ − (1− η)

1Z
π∗2(s2)

F (π) dπ

and

θ2t (s1) = qtR
2 (s2)

η

1Z
π∗
(s1)

F (π) dπ

 .

Two observations are important about the solution to the bank’s problem. First, the presence
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of asset markets affects the demand for real balance reserves of the bank. Asset markets give

the bank a new tool for transferring real risk (that is, the credit risk generated by real shocks on

investment). The bank still insures relocated depositors against liquidity risk, for which it needs

currency, but now it has another tool that provides resources to repay non-relocated depositors

when borrowers do not pay back their loans. In general, asset markets will in part substitute for

real balances. However, the presence of the liquidity shock will affect the demands (and prices) for

Arrow securities. Specifically, the amount of Arrow security that pays off in state s2 for banks in

region 1 (that is, when entrepreneurs default) depends on the ratio of the interest rate on loans and

the price of the Arrow security, which is a measure of the relative cost of obtaining consumption

in state of nature s2, multiplied by the likelihood of the event that s2 will occur and the bank will

suffer a shortage of liquidity. The form that the dependence of the demand for assets on interest

rates and prices takes is intuitively clear: interest rates represent the opportunity cost of holding

real balances, but real balances play a dual role as they are the only alternative asset available to

insure depositors who are not relocated.

The second observation concerns the efficiency of the equilibrium. As it will be shown below,

the equilibrium is never Pareto optimal for the case analyzed in this section.

4.1 Steady state equilibrium

In equilibrium, the money market, loans markets, and Arrow securities market must clear. The

market clearing conditions are the same as in the previous section, with the addition of the Arrow

securities market. In order, money markets clearing requires

¡
γ1t + γ2t

¢
x =

M

pt
,

which implies that ¡
γ1t+1 + γ2t+1

¢
(γ1t + γ2t )

=
pt
pt+1

.

Loan markets clearing conditions imply that

¡
1− γ1t

¢
x =

µ
α

R1

¶ 1
1−α

,

¡
1− γ2t

¢
x =

µ
α

R2

¶ 1
1−α

.
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The Arrow securities market clears when

θ1jt = −θ2jt; j = 1, 2.

It is easy to show that equilibria always exist. In particular, there is always an equilibrium where

π∗1,1 = π∗2,2 = 1 and π∗ij ∈ (0, 1) , i 6= j.11 This means that a bank in region j never exhausts the

amount of real balances held as reserves when the real shock in region j is favorable. Therefore,

the bank optimally sets the consumption of movers and non-movers to be the same as long as the

realization of the real shock is favorable. In this case, there is complete risk sharing with respect to

the liquidity shock region-wise, and so no liquidity shortage occurs in banks of the region with the

favorable solvency shock. This is exactly the opposite to what happens when there are no Arrow

securities. Note, however, that in the region where the real shock is not favorable depositors do not

get full insurance. Clearly risk sharing is not complete island-wise.

One remaining question is whether there are other equilibria in the economy analyzed in this

section. We do not have a proof of global uniqueness of the steady state equilibrium, even though

in all the examples we produced only one steady-state equilibrium exists. It is important to notice,

however, that equilibria are never Pareto optimal in this case as well. Depositors who are relocated

and depositors who are not relocated still face risk about their consumption when old, even though

ex-ante a bank no longer faces risk about the availability of resources in different states of nature.

When there is an excess demand for liquidity movers pay a cost in terms of lower return on their

deposits.

4.1.1 Cash-position of banks and asset pricing: some examples

An interesting question raised by the analysis in this section is whether the steady-state-equilibrium

demands for real balances in an economy with Arrow securities are greater or smaller than their

corresponding quantities in the stationary equilibrium of the economy without Arrow securities.

Arrow securities provide an additional means to insure non-movers and, in principle, a higher

portion of cash reserves could be devoted to the return offered to movers, possibly even with a

larger portfolio of loans. This intuition, in general, is not correct, as the interaction between the

11 There is a technical issue that must be clarified. The objective function for bank 1 includes an expression that,
in equilibrium, implies an indeterminancy of the form 0·∞when evaluated at π∗1,1 = 1.However, it can be shown that
this indeterminacy can be resolved using L’Hopital’s rule (see Appendix A.2 for details). Hence, the equilibrium
exists as long as we define the equilibrium value of the objective function equal to its limit.
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demand for real balances and asset markets depends on the cost of transferring resources across

states of nature as well as on other parameters in a bank’s optimal risk sharing problem. In other

words, while asset trading widens the scope for risk sharing, it also has an ambiguous effect on the

demands for real balances, and little can be said in general about their properties.12

To gain insight into this issue, let (γ1A, γ2A) denote the steady-state equilibrium vector of fractions

of real balances in the bank portfolio for the economy with Arrow securities13 presented in the

previous section. It is the solution to the system given by the two equations

γ1A = 1− (1− η)

1Z
γ1
A

γ1
A
+φ(1−γ2A)

α

F (π) dπ

γ2A = 1− η

1Z
γ2
A

γ2
A
+φ(1−γ1A)

α

F (π) dπ

(11)

Likewise, let (γ1B, γ2B) denote the steady-state equilibrium fractions of real balances for the econ-

omy with only banks. It is the solution to the system given by

γ1B = 1− η

1Z
γ1
B

γ1
B
+φ(1−γ1B)

α

F (π) dπ

γ2B = 1− (1− η)

1Z
γ2
B

γ2
B
+φ(1−γ2B)

α

F (π) dπ

(12)

Note that both system (11) and (12) are symmetric around η = 1
2
, and that at η = 1

2
the solution

implies γ1A = γ2A = γ1B = γ2B. It is not difficult to show that

lim
η→0

γjA = limη→1
γjA = 1

12 This is not surprising, because when both liquidity and real shocks are considered the economy still has an in-
complete set of markets.
13 That is, when π∗i,i = 1, i = 1, 2.
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for j = 1, 2. In addition,

lim
η→0

γ1B = lim
η→1

γ2B = 1,

and

lim
η→1

γ1B = lim
η→0

γ2B = 0.

Finally, direct computation reveals that ∂γ1B
∂η

< 0 and ∂γ2B
∂η

> 0 always hold. The implication of

the properties displayed above is that for extreme values of η, while the demands for real balance

reserves by banks tend to diverge across different regions in the economy without asset markets,

they tend to converge in the economy with Arrow securities. The same property holds near η = 1
2
,

where direct computation shows that

dγ2B
dη

¯̄̄̄
η=1

2

>
dγ1A
dη

¯̄̄̄
η= 1

2

> 0 >
dγ1A
dη

¯̄̄̄
η= 1

2

>
dγ1B
dη

¯̄̄̄
η= 1

2

Figure 1 provides an example for the special case of a uniform distribution for π, and parameters

values α = 0.65 and φ = 0.9. This example illustrates the sense in which the demands for reserves

are less “reactive” to changes in real (solvency) risk in the economy with asset markets. Therefore,

while it is not true in general that the introduction of asset markets reduces the total demand for

real balances when both regions are considered, the introduction of asset markets may decrease

the “volatility” of the demand for reserves. The reaction of real balance reserves in response to a

change in real risk is milder when asset markets are present.
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Fig 1: The demands for real balance reserves: an example.

With these equilibrium values for γj∗A , it is easy to compute the equilibrium value of q∗, the relative

price of Arrow securities, for each η. This is clearly strictly decreasing in η. The higher η the higher

the probability that projects in region 1 are successful, while the opposite happens with the projects

in region 2. These different likelihoods must be reflected in the prices of the corresponding Arrow

securities.

Another interesting issue is how the cash-position and asset prices vary with the distribution of

the liquidity shocks. To gain some insight, we parameterize the cumulative distribution function

F (π) assuming that F (π) = πσ,with σ > 0. Note that when σ = 1we get the uniform distribution

function as a special case. When σ is low (less than one) it is more likely that the number of movers

is low, while when σ is high (greater than one) it is more likely that the number of movers is high.

We compute the equilibrium cash position of the bank of each region for two different values of η,
1
4
and 3

4
. We just report the results for η = 1

4
since the figure for the case of η = 3

4
is completely

symmetric. We consider four values for σ : 1
3
, 1
2
, 2 and 3.
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Figure 2: cash-position and liquidity shocks

Figure 2 confirms the intuition that the cash position is increasing in σ, since a higher σ implies a

higher expected number of movers and so a higher need for reserves to satisfy cash withdrawals.

However, it is apparent from this figure that the equilibrium cash reserves are less sensitive to σ

with Arrow security markets than without them. The intuition for this result is that Arrow securities

seem to be partially hedging liquidity risk, in the sense that whether agents expect a large or a small

number of movers tend to become less of an issue given than banks can trade in these securities.

Perhaps more interestingly, cash reserves in region 2 are always higher when Arrow securities

are traded than without them. Thus, the presence of Arrow securities implies a reversion in the

demands for cash reserves: with no Arrow securities, the cash position of the region with higher

probability of failure is higher than that of the other region, while the opposite occurs with Arrow

securities. Thus, the introduction of such markets clearly reduces liquidity in the region with lower

probability of success in its projects. The same is true for region 1 for sufficiently low values of σ

(i.e., at least for σ ≤ 1
2
), even though it is more likely that region 2’s projects are successful than

region 1’s projects. This effect may be related to the higher return on deposits for each consumer

when Arrow security markets are open, which requires higher cash reserves (and expected marginal

product of real investment), provided that risk sharing is not complete. This does not happen in

region 1 when σ is large enough (in which case γ1B > γ1A). One possible explanation relies on the

same argument used in the paragraph above: Arrow securities may contribute to the hedging of
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liquidity risk, which becomes important for a highly right-skewed distribution of such a shock.

We also compute the equilibrium relative price q∗ for the same parameter values. Figures 3 and

4 summarize the findings for the cases of η = 1
4
and η = 3

4
.

Figure 3: Arrow-security relative price when η = 1
4

Figure 4: Arrow-security relative price when η = 3
4
.
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The slope of the curve relating σ with q∗ is positive when η = 1
4
, whereas it is negative when η =

3
4
. Figures 3 and 4 suggest that higher ex-ante liquidity needs (larger values of σ) make insurance

less valuable in the region where it is more likely that projects fail and more valuable in the other

region. This is a natural consequence of having that, in equilibrium, q∗ =
³
1−γ1∗A
1−γ2∗A

´α
. The cash

position of the region with higher probability of success in projects is always larger than that of

the other region, for any σ, but the difference between the two decreases with σ. This means that

higher ex-ante liquidity needs make the equilibrium amounts of cash reserves of the two regions

closer to each other. The mirror argument is that real investment decreases more in the region with

lower probability of success when σ gets higher, which drives the results in figures 3 and 4.

This analysis describes explicitly the interaction between Arrow securities and liquidity shocks,

even in the case where such securities are not intended to hedge liquidity risk. This result em-

phasizes that the value that markets give to Arrow securities for insuring against solvency shocks

may depend on some features of the probability distribution of liquidity shocks. In the present

example, skewness constitutes such key feature. The more skewed is such distribution towards

high values of π, the more markets tend to value the Arrow security that pays off in the more likely

(solvency) state. In other words, the higher the probability of high amounts of cash withdrawals in

the economy, the less lending banks make available to entrepreneurs. Thus, the amount of insur-

ance provided by Arrow securities is smaller. The reason is that banks facing higher probability of

default can get insurance from cash holdings. A higher σ implies higher cash reserves, and banks

in the region with lower probability of success can finance consumption in the default state with

cash reserves and with payments from Arrow securities. With strictly concave preferences, the

higher the amount of cash reserves, the lower the marginal benefit in terms of future utility of one

additional unit of the corresponding Arrow security.

5 The economy with asset markets and a central bank

In this section, we complete the financial structure of our simple economy and add a central

bank. The central bank operates a discount window to provide one-period loans of currency to

banks facing an excessively high amount of withdrawals at the end of period t. These loans are

made after shocks are realized. Therefore, they constitute pure liquidity loans: a bank will be

solvent in period t + 1, when borrowers repay their loans and Arrow securities trades clear. The
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difference with the previous case is that a bank knows before shocks are realized that it will be able

to take contingent loans from the central bank.

We assume that the central bank charges a zero net nominal (and real in steady state) interest

rate on discount window loans. We let δjt (s, π) denote the amount of real balances that a bank in

region j borrows from the central bank at date t. This amount of currency is used to pay movers in

period t and will be repaid in period t+1 to the central bank. The budget constraints of a bank are

given by the following equations:

πrmj
t (s, π) = γjtβ

j
t (s, π)

pt
pt+1

+ δjt (s, π)
pt
pt+1

,

(1− π) rjt (s, π) = γjt
£
1− βjt (s, π)

¤ pt
pt+1
− δjt (s, π)

pt
pt+1

+
¡
1− γjt

¢
Rj
t (s) + θjt (s) .

In this case, the problem of the bank is to choose optimally a liquidation policy βjt (s, π) , a bor-

rowing policy δjt (s, π) , the amounts of Arrow securities θ
j
t (s) to trade, and the fraction of deposits

γt to hold as reserves. A bank chooses β
j
t (s, π) and δ

j
t (s, π) after observing the shocks, and, as in

the previous sections, solves the problem:

max
05βjt (s,π)51, δ

j
t (s,π)

π ln

µ
γjtβ

j
t (s, π)

pt
pt+1

+ δjt (s, π)
pt
pt+1

¶
+

(1− π) ln

µ
γjt
£
1− βjt (s, π)

¤ pt
pt+1

− δjt (s, π)
pt
pt+1

+
¡
1− γjt

¢
Rj
t (s) + θjt (s)

¶
.

In Appendix A.3 we show that one solution to this problem sets

βjt (s, π) =


π γjt

pt
pt+1

+(1−γjt)Rj
t (s)+θ

j
t (s)

γjt
pt

pt+1

; π 5 π∗j
¡
γjt , s

¢
1; π > π∗j

¡
γjt , s

¢
and

δjt (s, π) =

(
0; π 5 π∗j

¡
γjt , s

¢
pt+1
pt

h
π
£¡
1− γjt

¢
Rj
t (s) + θjt (s)

¤− γjt
pt
pt+1

(1− π)
i
; π > π∗j

¡
γjt , s

¢
where π∗j is given by (10). A bank holds a certain amount of reserves, and uses them to pay movers

as long as π 5 π∗j
¡
γjt , s

¢
. For larger values of the relocation shock, the bank borrows currency

for one period from the discount window. This is not the only solution to a bank’s problem. In

fact, the liquidation and borrowing policies depend on the total amount of currency reserves a

bank decided to acquire before observing the liquidity and productivity shocks, and this amount is
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indeterminate with zero-nominal-rate discount window lending.14 If it were not, the bank would

hold only currency when currency’s rate of return dominated other rates of return. Vice versa, the

demand for currency reserves would be zero if money were dominated in rate of return by other

portfolios of assets.

We can make these statements because in this section, with a central bank operating a discount

window, we essentially have constructed a complete set of markets.15 The easiest way to note

this equivalence with the complete market case is by rewriting the maximization problem of the

bank subject to a single budget constraint. Solving the first constraint of the bank’s problem for

δjt (s, π) , and substituting in the second constraint we obtain:

πrmj
t (s, π) + (1− π) rjt (s, π) = γjt

pt
pt+1

+
¡
1− γjt

¢
Rj
t (s) + θjt (s) ,

which implies

θjt (s) = πrmj
t (s, π) + (1− π) rjt (s, π)−

·
γjt

pt
pt+1

+
¡
1− γjt

¢
Rj
t (s)

¸
. (13)

Recall that the self-financing condition at the beginning of date t is given by:

θjt (s1) + qtθ
j
t (s2) = 0.

Replacing in this equation the expression for θjt (s) gives the sole budget constraint for maximiza-

tion problem of the bank:X
s∈S

qst
£
πrmj

t (s, π) + (1− π) rjt (s, π)
¤
=
X
s∈S

qst

·
γjt

pt
pt+1

+
¡
1− γjt

¢
Rj
t (s)

¸
(14)

which holds for every π. It states that the weighted sum over states of nature of the promised

returns to depositors is equal to the weighted sum of the returns on the bank’s portfolio, with the

weights given by the prices of the Arrow securities. The problem of the bank can then be written

as

max
X
s∈S

η (s)

·Z 1

0

¡
π ln

¡
rmj
t (s, π)

¢
+ (1− π) ln

¡
rjt (s, π)

¢¢
f (π) dπ

¸
14 The indeterminacy is present only for an individual bank, not for the aggregate economy, where the price level must
be well defined in equilibrium.
15 The analogy with complete markets makes sense in a steady-state equilibrium, because in this case the economy
is essentially a sequence of two-period economies with two states of nature with respect to the real shock. Note
that for other equilibria, in an overlapping-generations setting, this interpretation is not correct and the definition
of complete markets more complex.
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subject to (14). In Appendix A.3 we show that the first order conditions to this problem imply that

rmj
t (s, π) = rjt (s, π)

for every s and π. The bank in this case is able to offer movers and non-movers the same rate of

return. Note that the rate of return offered is not random, as it would be if there were not asset

markets. It is now evident what role banks, the central bank, and asset markets play in this model.

Banks provide liquidity insurance to depositors and the central bank allows for the existence of

complete insurance against liquidity shocks. Asset markets allow banks to trade credit risk. Note

that credit risk is not “intertemporal” but “cross-sectional”: that is, risk for which asset markets

are used does not concern the intertemporal distribution of resources, but total amount of resources

available in a certain period.

We show in Appendix A.3 that the rates of return offered to movers and non-movers must be

equal to
η (s)

qst

(X
s∈S

qst

·
γjt

pt
pt+1

+
¡
1− γjt

¢
Rj
t (s)

¸)
. (15)

Equation (15) states that the return that a bank promises to movers and non-movers in state s is

equal to the total present value of goods received in period t + 1 weighted by the ratio of the

probability of s relative to the price of the Arrow security that pays off in s. This is natural given

the completeness of Arrow securities markets.

In Appendix A.3, we also show that to insure an interior solution for γt the following condition

must hold:

(q1t + q2t)
pt
pt+1

= q1tR
j
t (s1) + q2tR

j
t (s2) . (16)

Equation (16) is a no-arbitrage condition stating that the return on money (the inverse of the gross

inflation rate) must be a weighted average of the promised returns from entrepreneurs of both

regions, where the weights depend upon the prices of Arrow securities. Using the normalization

adopted so far for the prices of Arrow securities we let

qt ≡ q2t
q1t

.

25



Therefore the no-arbitrage condition can be expressed as

pt
pt+1
−Rj

t (s1) = −qt
µ

pt
pt+1

−Rj
t (s2)

¶
for every j. To analyze the equilibrium of the economy, it is first essential to get the optimal net

demand for Arrow securities by each bank type.

We use the constraint (13), and substitute optimal rates of return (15) and the arbitrage condition

(16) to obtain

θjt (s) =

µ
η (s)

qst

¶¡
q1tR

j
t (s1) + q2tR

j
t (s2)

¢− ·γjt pt
pt+1

+
¡
1− γjt

¢
Rj
t (s)

¸
.

We show in Appendix A.3 that the optimal net demand functions for these securities by each bank

type are given by

θ1t (s1) =

µ
pt
pt+1

¶£
qtγ

1
t − (1− η) (1 + qt)

¤
,

θ1t (s2) =

µ
pt

qtpt+1

¶£
(1− η) (1 + qt)− qtγ

1
t

¤
,

and

θ2t (s1) =

µ
pt
pt+1

¶£
η (1 + qt)− γ2t

¤
,

θ2t (s2) =
1

qt

µ
pt
pt+1

¶£
γ2t − η (1 + qt)

¤
.

5.1 Equilibrium

In equilibrium θ1t (s) + θ2t (s) = 0 for every s, so that the asset market clears. This condition

implies that

qt =
γ2t + 1− 2η
γ1t + 2η − 1

. (17)

Thus, the relative price of the Arrow securities, which is the relative cost of transferring resources

from one solvency state of nature to the other, must be equal in equilibrium to the ratio of two

expressions which depend on the fraction of deposits maintained in cash, γjt . Equation (17) can

also be rewritten as

qt =
2 (1− η)− (1− γ2t )

2η − (1− γ1t )
.
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This expression shows that the relative cost of transferring goods across states of nature must be

related to the probabilities of success for every entrepreneur type and to the fraction of deposits

that banks are willing to lend.

Also, note that in equilibrium

(1 + qt)
pt
pt+1

= R1t (s1) + qtR
1
t (s2) = R2t (s1) + qtR

2
t (s2)

holds. Because we assumed that R1t (s2) = R2t (s1) = 0, the last equation is equivalent to

R1t (s1) = qtR
2
t (s2) .

Hence, the relative cost of transferring goods between states s1 and s2 must be equal to the relative

returns that banks obtain from entrepreneur types when their projects are successful.

In equilibrium, the money market and the loans markets must also clear. These market clearing

conditions remain unchanged:
M

pt
=
¡
γ1t + γ2t

¢
x,

and

Rj
t =

α

x1−α
¡
1− γjt

¢1−α .
5.2 Steady state analysis

In Appendix A.4, we prove the that the steady state equilibrium is unique and we show that there

are no other equilibria. Specifically, we show the following:

Proposition 2 Under the condition α
1

1−α
x

< min
n
1
η
, 1
1−η
o
there exists a unique steady state

(γ1, γ2) ∈ <2++; the steady state is locally unstable. Hence, it is the unique equilibrium for this
economy.

Interestingly, unlike in the analysis of Antinolfi, Huybens and Keister (2001), this model does

not allow for the presence of inflationary equilibrium trajectories when the central bank acts as a

lender of last resort and lends at a zero nominal rate.16

16 The different equilibrium behavior is due to the curvature present in the investment technology available to banks as
well as the presence of real shocks and Arrow securities.
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It is important to remark that the return that each lender type obtains is equal not only across

types but also across regions. To see this, and dropping the subscript t for simplicity, note that in

steady state rj (π, s) = η(s)
qs

©P
s∈S qs [γ

j + (1− γj)Rj (s)]
ª
. Given the definition of q we have

that

rj (π, s1) = η
£
γj +

¡
1− γj

¢
Rj (s1) + q

¡
γj +

¡
1− γj

¢
Rj (s2)

¢¤
,

rj (π, s2) = (1− η)

·¡
γj +

¡
1− γj

¢
Rj (s1)

¢ 1
q
+ γj +

¡
1− γj

¢
Rj (s2)

¸
.

From the no-arbitrage conditions we know that (1 + q) = R1 = q R2, or
³
1 + 1

q

´
= R2, 1 + q =

R1, R
1

q
= R2 and qR2 = R1. Replacing these equalities in the expressions for rj (s, π) above gives

rj (π, s1) = η
£
γjR1 +

¡
1− γj

¢
R1
¤
= ηR1; j = 1, 2

rj (π, s2) = (1− η)
£¡
1− γj

¢
R2 + γjR2

¤
= (1− η)R2; j = 1, 2.

Thus, rj (π, s) = η (s)Rs, for j = 1, 2 and s ∈ {s1, s2} . In words, Arrow securities and the central
bank acting together imply an allocation where all lenders obtain the same consumption quantity

and consumption only depends on the realization of the real shock s.

It is not difficult to show that the equilibrium analyzed in this section is Pareto optimal. Intu-

itively, this is easy to see from the characteristics of the equilibrium allocation. First, borrowers

are risk neutral. In addition, independently of the state of nature realized, all lenders have the same

marginal rate of substitution. Specifically, all lenders consume, per unit deposited, ηR1 when s1
is realized, and (1− η)R2 when s2 is realized. The marginal rate of substitution of consumption

in the two states is simply ηR1

(1−η)R2 , where recall that R
j = α [(1− γj)x]

α−1. Finally, the marginal

rate of substitution between consumption in state s1 and s2 is equal to the marginal rate of trans-

formation between the same states of nature.17 This is easily seen by noting that the social return

to investing kj units of the consumption good in technology j is, because of the law of large num-

bers, η (sj) g0 (kj) , the probability of success multiplied by marginal product of the technology

employed. In equilibrium, Rj = g0 (kj) and kj = α [(1− γj)x]
α−1. Therefore, the marginal rate

of transformation is equal to the marginal rate of substitution. In Appendix A.5, we prove formally

17 Recall that an arbitrage condition insures that fiat money and real investments are seen as equally good means
to transfer resources across states of nature, given the presence of Arrow securities, and that in steady state the return on
money is set to unity.
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that the equilibrium allocation is Pareto optimal by analyzing the problem of a central planner, and

show that the equilibrium obtained in this section decentralizes the allocation chosen by the central

planner.

6 Discussion

6.1 The concept of liquidity

After having presented the main results, it is useful to get a deeper look at some of the concepts

involved in the model. Unlike risk that relates to uncertainty over the total amount of resources

available at a future date, liquidity risk relates to uncertainty over the distribution of a given amount

of resources over a certain period of time. Liquidity, described as above, is the property of an

asset, and relates to the readiness with which resources committed to a certain utilization can be

transformed into consumption without loss.18

An important feature which links these two kinds of risk is that in both cases the result of an

(aggregate) unfavorable shock is a relative scarcity of consumption at a point in time: in the case

of someone who faces a liquidity shock which takes the form of an impending need to consume,

even if it is known that resources will be available, this knowledge does not help satisfying present

consumption needs. In this sense, even though liquidity and real risk pertain to different economic

phenomena, their result is the same. However, at the level of the individual investor, the role that

fiat money plays in this notion of liquidity should become clear. Money is the most liquid asset

in the sense that its value (in money terms) is certain and equal to unity. Thus, for an individual

investor money is a safe asset in the sense that it can hedge from both liquidity and real risk,

provided that its purchasing power is stable over time, at the (opportunity) cost represented by

the return on alternative investments. At the aggregate level, however, fiat money cannot play

this role. Money does not, in the aggregate, allow the economy to transfer consumption over time,

because being an outside asset it is liquid (readily transformable into consumption) only in as much

as consumption goods are available.19 Fiat money does not increase the aggregate consumption

possibilities at a point in time.

It would seem then that money does not provide liquidity insurance in the aggregate. However,
18 For an account of the early conceptual history of the idea of liquidity see Hicks’ (1962) presidential address
delivered at the end of his mandate as president of the Royal Economic Society.
19 This is the notion of liquidity used by the search literature (see, e.g., Lagos, 2006).
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there is another kind of demand for liquidity for which fiat money does provide a fundamental role.

This occurs when, in the portfolio of individual investors, liabilities issued by private borrowers

are perceived to be undesirable and there is a shift of portfolio investment towards liquid assets,

money in particular (of course assuming that money has a known and stable purchasing power).

In these cases, there is no need to inefficiently liquidate fixed investment to satisfy consumption

needs, but the inefficient liquidation of investment goes to finance a portfolio composition shift in

which money has a larger weight. In other words, the manifestation of liquidity risk in this case

resides into a shift from certain types of liabilities into fiat money. It is with respect to this kind

risk the function of the central bank becomes fundamental, and this is the role that the central bank

plays in our analysis of section 5.

Our notion of liquidity is not always identical to the one adopted elsewhere. The following

subsection explores more in depth the relationship that this paper has with the relevant literature.

6.2 A short overview of the literature.

As briefly described in the introduction, Allen and Gale (2004) model a real economy in which

it is possible to identify the same two types of shocks as in this paper. They relate the existence

of different intermediary contracts to their ability to complete markets. Their way of modelling

financial intermediaries and (complete) security markets is the same as in this paper, although the

nature of the shocks is somewhat different. They prove that the presence of financial intermedi-

aries and complete Arrow-security markets together imply constrained Pareto-efficient allocations

(as long as investors cannot trade in those securities). They also consider particular examples of

incomplete security markets to analyze the role of financial regulation in improving efficiency in

the absence of the aggregate component of liquidity shocks. One way to compare our results with

theirs is to emphasize that we actually start from an economy in which markets are incomplete,

both relative to liquidity risk and real risk. In this formulation both private banks and the central

bank complete the market with respect to liquidity shocks, while securities complete markets with

respect to “real” risk.

Allen and Gale (1994) present a model of a barter economy with incomplete asset markets (and

no banks) where investors are subject to preference shocks like those described in Allen and Gale

(2004), but face entry costs in asset markets. Liquidity is defined as consumption goods for im-

mediate delivery, with no possible reference to cash (given absence of fiat money in the model).
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They can show the existence of an equilibrium with limited participation and highly volatile asset

prices even with small aggregate component of the preference shock. Such equilibrium is shown

to be Pareto-inferior to the full participation equilibrium (with low volatility of asset prices). In

fact, the amount of liquidity in goods is key in determining the volatility of such prices. The

results of our model in section 4 state, on the other hand, that the level of the relative price of

assets in equilibrium is affected by the distribution of liquidity demand shocks, which also deter-

mine (endogenously) the amount of liquidity in equilibrium. Results in section 5 also state that,

given a right amount of liquidity provided in fiat money by the central bank, there is no interac-

tion between asset prices and liquidity shocks. This result could be interpreted as the analog to

Proposition 6 in Allen and Gale (1994).

The paper by Allen and Gale (2006), on the other hand, discusses the role of liquidity shocks

in increasing the volatility of asset prices relative to fundamentals in a special case of the model in

Allen and Gale (2004). They show that even when the aggregate component of the liquidity shock

becomes negligible, in equilibrium asset prices are non-trivially volatile, implying the presence

of robust sunspot equilibria, given that Arrow securities are completely absent from the analysis.

The model in this paper, in turn, shows that if we introduce Arrow securities whose payoffs are

contingent on the real shocks only, their equilibrium prices also interact with the liquidity shock in

the absence of a central bank: the insurance that such securities provide against solvency shocks

is less valuable the more the probability distribution of liquidity shocks is skewed towards high

values.20

Gale (2005) presents a two-period economy where consumers face cash-in-advance constraints

not only to purchase goods but also to buy securities. He investigates the effects of monetary policy

decisions on the volatility of equilibrium (real) asset prices, among other topics. One implication

of his model is that, if the central bank provides the right amount of liquidity in fiat money, wild

fluctuations in interest rates and asset prices can be eliminated. Our model, in turn, reaches a

similar conclusion in terms of the level of (relative) asset prices, although providing a slightly

stronger result. With the right amount of liquidity in fiat money, the central bank, by operating

in an economy with (active) Arrow security markets and private banks, allows the economy to

achieve Pareto efficiency. One important reason is that, while in Gale (2005) there is a trade-off
20 Lagos (2006) using a search model shows that equilibrium asset returns may contain a liquidity premium that
reflects that ability, which is a result that is related to ours about the dependence of Arrow security prices on the
distribution of preference shocks.
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between stabilizing asset prices and collecting seignorage, this is not the case in our model, given

that the price level our analysis does not depend on the aggregate state, a property that is absent in

Gale (2005).

As discussed in the introduction, there is already a related literature on liquidity provision in

barter economies. Allen and Gale (1997) study the different reaction of consumption in response to

real shocks in an overlapping generations economy, and show that the volatility of consumption is

different in bank-based and market-based financial systems. In their model banks induce a Pareto-

efficient equilibrium allocation while markets do not. On the other hand, Holmstrom and Tirole

(1998) study the optimal provision of liquidity in a real model with moral hazard in which banks

supply liquidity. They also show that banks are Pareto-superior to markets in this role when no

aggregate uncertainty is present. In their framework, unlike the others mentioned so far, firms face

liquidity shocks. In the absence of aggregate risk a commitment problem needs the coordinating

role of banks for the efficient allocation of liquidity (which markets are not able to provide). In one

case, when there is only aggregate risk, Holmstrom and Tirole (1998) show that government debt

is indeed the tool for optimal liquidity provision. Clearly this result resembles that of the present

paper, where the central bank plays a key role in providing aggregate liquidity in our model.

The mechanisms in this paper and in Holmstrom and Tirole (1998) which allow for efficient

equilibria are similar, although with different implications. Holmstrom and Tirole (1998) rely on

the ability to commit to future taxation. This paper, instead, relies on a lender of last resort: the

central bank issues fiat money today against resources that will be available in the future. The

enforcement assumptions in each case are quite different. Without intending to analyze this issue

in depth, it is apparent that the nature of the commitment that a central bank (as a lender of last

resort) may have on this type of contingent credits is different from the commitment to future

taxation.

7 Conclusions

We presented a model to study the different roles of different financial institutions (in the pres-

ence of restricted participation by consumers in securities markets). In this setting, banks have the

role of providing efficient idiosyncratic liquidity-risk sharing among depositors. For the aggregate

component of liquidity risk, central bank short-term loans are also necessary to supply an asset
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(fiat money) that completes the market against this intertemporal type of risk. Securities markets

allow society to diversify solvency risk, that is, the uncertainty about the amount of resources avail-

able in the economy at a certain future date. When Arrow securities are written only on solvency

contingencies, markets are complete only with the three institutions simultaneously present in the

economy. This model (with those three institutions) produces an equilibrium allocation which is

the same that would obtain in an economy with complete markets (in the traditional sense of a suf-

ficient number of contingent claims to span the space generated by the number of states of nature)

and a safe asset, and where the liquidity shock is not present.

Note that this last result has a direct implication for monetary policy. When this policy is

conducted in order to achieve the best (i.e., Pareto-efficient) risk sharing allocation, the result

states that the amount of fiat money lent to banks must take into account the long run return on

illiquid loans (which in our model is assumed to be known to the central bank as well as the rest of

the economy) vis-a-vis the amount of cash available to banks. This policy plays the same role as

the tax-and-transfer policy in Holmstrom and Tirole (1998), that is, this mechanism allows banks

to bring forward goods (purchasing power of money) from the future to the present, but without

recurring to any type of future taxation. The reason for this difference is the notion of liquidity

adopted.

The model also generates interesting implications of risk sharing and asset pricing in incomplete

markets. When banks are the only financial institution in the economy, in equilibrium liquidity

shortages only occur in the region where the loans of the banks are performing, but it does not

occur where such loans are non-performing. When Arrow securities are added to this economy,

the equilibrium prices of such assets interact with the liquidity distribution in a non-trivial fashion.

The reason is that the evaluation of assets interact with the amount of cash reserves held by banks,

and these reserves depend crucially on the ex-ante probability distribution of cash withdrawals.

There are several special features of the model economy that allow banks, asset markets and

banks to coexist and deliver an efficient equilibrium allocation. First, as it is common in this liter-

ature, we restrict market participation:21 only intermediaries trade in asset markets. Even though

one could think of individual participation costs to justify this assumption, it is a fundamental

assumption in generating a separation of roles between asset markets and banks.

Second, we assumed that banks cannot perfectly diversify credit risk directly, which is essen-

21 See Allen and Gale (2004), and Diamond (1997).
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tially another form of limited market participation. Letting banks perfectly diversify credit risk

would subtract the fundamental rationale for markets in the model, but in general would not gener-

ate the same equilibrium allocation obtained with a model with markets. This is a common feature

of all model relying on the Diamond and Dybvig (1983) framework, in which the coefficient of

relative risk aversion plays an important role.

Finally, the central bank acts in the model as a perfect lender of last resort. The lender of last

resort role of the central bank stems from the (aggregate) nature of the liquidity shock. The central

bank can allow the economy to have complete risk insurance against liquidity shocks for two

reasons. First, money is a perfect vehicle to transfer consumption across periods for an individual

bank, that is it is not a risky asset and it is made freely (that is, at a zero net interest rate) available

to the banking system. Second, banks know exactly that the central bank will do always the “right

thing,” and the central bank can always deliver on that expectation, because it is always possible to

distinguish precisely between real and nominal shocks.

Adding some of these features, in particular adding uncertainty over the central bank behavior

and removing the ability to perfectly identify liquidity and real shocks would further the study of

the interaction among asset prices, interest rates, central banking, and intermediation.
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Appendix A. Proofs and Derivations

This appendix collects most of the formal analysis. The paper is long, and the appendix is not

meant for publication but to provide a reference for the refereeing process.

A.1 Proof of proposition 1

We need to show the existence of a unique pair of values (γ1, γ2) each of which satisfies

γj = 1− η (sj)

Z 1

γj

γj+φ(1−γj)α
F (π) dπ,

which is equivalent to show
1− γj

η (sj)
=

Z 1

γj

γj+φ(1−γj)α
F (π) dπ.

The left hand side is a strictly decreasing line in γj, with slope− 1
η(sj)

. At γj = 0 the left hand side

is equal to 1
η(sj)

> 1. Define Φ (γj) ≡ R 1 γj

γj+φ(1−γj)α
F (π) dπ.We then have that Φ (0) =

R 1
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F (π)

dπ = 1 − E [π] < 1.We also have
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= −F

·
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#
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γj+φ(1−γj)α then it is possible to show that
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¡
γj
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[1− γj]1−α
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Thus, γj > 0 and (1− α) > 0 imply Φ0 (γj) < 0. Note that limγj→1 Φ0 (γj) = ∞, since

π∗j (1, sj) = 1,F (1) = 1, and α < 1. Therefore, the curve Φ (γj) must intersect the line from

above. By continuity, this implies that there exists at least one γj∗ ∈ (0, 1) such that Φ (γj∗) =
1−γj∗
η(sj)

. Now we show that this value is unique. It is enough to show that |Φ0 (γj)| < 1
η(sj)

at γj∗.

If this is the case, the existence of a second γj∗ implies |Φ0 (γj)| > 1, a contradiction. Note that

|Φ0 (γj)| is equal to (after some tedious algebra):
F
£
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j, sj)
¤ £
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But since α < 1 then this expression is strictly less than F [π∗j(γj ,sj)][1−π∗j(γj ,sj)]π∗j(γj ,sj)
γj(1−γj) . Hence it
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is enough to show that F [π
∗
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A.2 Existence of equilibrium in the economy with Arrow securities and
without a central bank.

In the economy with only Arrow securities the objective function for bank 1 includes an expression

equal to
1Z

π∗11

½
π log γ1 + (1− π) log

·¡
1− γ1

¢
R1 − q1
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¸¾
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with the expressions obtained in the text, becomes
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F (π) dπ. This expression would equal

an indeterminate expression, since
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converges to 0 for γ1 sufficiently close to 1 − (1− η)
R 1
π∗1,2

F (π) dπ. Hence the equilibrium with

π∗jj = 1 exists as long as we define the equilibrium value of the expression in the objective function

mentioned above equal to its limit (equal to 0).

A.3 Determination of the demand for Arrow securities when the central bank
is present

The problem of the bank can be written as
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Let λ (π) be the multiplier associated with this constraint. We solve the problem backwards. We
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first take γjt as given and also we take every possible realization of π as given. The Lagrangian for

this problem is
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We also had rmj
t (s, π) = rjt (s, π) . Therefore, replacing this in the objective function, for every π
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Let us consider the problem of the bank for each region.
• Region 1 Bank
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s∈S

qst

·
γ1t

pt
pt+1

+
¡
1− γ1t

¢
R1t (s)

¸
= q1tR

1
t + 0

Recall that for every j, θjt (s) = π rmj
t (s, π) + (1− π) rjt (s, π) −

h
γjt

pt
pt+1

+
¡
1− γjt

¢
Rj
t (s)

i
,

that rmj
t (s, π) = rjt (s, π) , and that:

rmj
t (s, π) =

η (s)

qst

(X
s∈S

qst

·
γjt

pt
pt+1

+
¡
1− γjt

¢
Rj
t (s)

¸)
.

Thus, for j = 1 :

θ1t (s) =

·
η (s)

qst

¸
q1tR

1
t −

·
γ1t

pt
pt+1

+
¡
1− γ1t

¢
R1t (s)

¸
.

Then, θ1t (s1) = ηR1t − γ1t
pt
pt+1
− (1− γ1t ) R

1
t . But from the no-arbitrage condition (1 + qt)

pt
pt+1

= R1t (s1) + qt R
1
t (s2) = R1t , so R1t = (1 + qt)

pt
pt+1

. Replacing this in the expression for θ1t (s1)
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above we get:

θ1t (s1) =

µ
pt
pt+1

¶£
qtγ

1
t − (1− η) (1 + qt)

¤
.

We can now solve for θ1t (s2) using identical arguments. Recalling that R1t = (1 + qt)
pt
pt+1

and

using the equation for θ1t (s) at s = s2 then:

θ1t (s2) =

µ
pt

qtpt+1

¶£
(1− η) (1 + qt)− qtγ

1
t

¤
• Region 2 Bank

Following the same steps as above we obtain:

θ2t (s1) =

µ
pt
pt+1

¶£
η (1 + qt)− γ2t

¤
and

θ2t (s2) =
1

qt

µ
pt
pt+1

¶£
γ2t − η (1 + qt)

¤
.

A.4 Proof of proposition 2

Before starting the proof, we show an implication of the statement in this proposition. Let φ

be defined as above. We show that the condition φ < min
n
1
η
, 1
1−η
o
implies that φ < 21−α©

η1−α + (1− η)1−α
ª
. To see this, note that min

n
1
η
, 1
1−η
o
= 1

1−η when η <
1
2
and min

n
1
η
, 1
1−η
o

= 1
η
for η > 1

2
. For η < 1

2
define

ϕ1 (η) ≡ 21−α
©
η1−α + (1− η)1−α

ª− 1

1− η
.

Note that ϕ1 (0) = 21−α − 1 > 0 (since 21−α > 11−α = 1). Also, ϕ1
¡
1
2

¢
= 0, and we have that

ϕ01 (η) = 2
1−α (1− α)

£
η−α − (1− η)−α

¤− 1

(1− η)2
,

ϕ”1 (η) = 2
1−α (1− α) (−α)

h
η−(1+α) + (1− η)−(1+α)

i
− 2

(1− η)3
< 0.

The first expression is zero for some η1 ∈
¡
0, 1

2

¢
. Clearly ϕ1 (η1) ≥ 21−α > 0. Hence, the function

ϕ1 (η) attains a strictly positive value at its maximum in
¡
0, 1

2

¢
and the function is strictly con-

cave in the whole interval. This implies that ϕ1 (η) > 0 for all η ∈ ¡0, 1
2

¢
. For η ∈ [0, 1

2
) then,
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21−α
©
η1−α + (1− η)1−α

ª
> 1

1−η holds. For η >
1
2
, consider

ϕ2 (η) ≡ 21−α
©
η1−α + (1− η)1−α

ª− 1
η
.

Clearly ϕ2
¡
1
2

¢
= 0 and ϕ2 (1) = 21−α − 1 > 0. Computing the derivatives, it easy to show that

ϕ02 (η) = 0 for some η = η2 ∈
¡
1
2
, 1
¢
. Since ϕ2 is strictly concave, the function ϕ2 attains a strictly

positive value at η2 and therefore ϕ2 (η) > 0 for all η ∈ (12 , 1]. These two arguments state then that
min

n
1
η
, 1
1−η
o
5 21−α

£
η1−α + (1− η)1−α

¤
, where the equality only holds at η = 1

2
. This will be

used for future reference.

We first show that there exists a unique pair (R1, R2) satisfying the stationary equilibrium equa-

tions. Note that the first condition can be written as R1+R2

R2
= R1, which simplifies to

R2 =
R1

R1 − 1 . (18)

The second equation can be rewritten as

2ηR1 − α
1

1−α

x

¡
R1
¢ −α
1−α = 2 (1− η)R2 − α

1
1−α

x

¡
R2
¢ −α
1−α . (19)

Hence, we have two equations in two unknowns. The first equation defines a curve on the plane

(R1, R2) which is strictly decreasing with asymptotes at (1, 1) . The second equation also defines

implicitly a curve on the plane (R1, R2). To get the derivative we apply the implicit function

theorem to the map:

Λ
¡
R1, R2

¢ ≡ −Ã2 (1− η)R2 − α
1

1−α

x

¡
R2
¢ −α
1−α

!
+ 2ηR1 − α

1
1−α

x

¡
R1
¢ −α
1−α

at the point where Λ (R1, R2) = 0. In general, we have that dR2
dR1

= −ΛR1(R1,R2)
ΛR2 (R

1,R2)
. In this case we

have

ΛR1
¡
R1, R2

¢
= 2η +

α
1

1−α

x

µ
α

1− α

¶¡
R1
¢ −α
1−α−1

ΛR2
¡
R1, R2

¢
= −

Ã
2 (1− η) +

α
1

1−α

x

α

1− α

¡
R2
¢ −α
1−α−1

!
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so that
dR2

dR1
=

2η + α
1

1−α
x

¡
α
1−α
¢
(R1)

−α
1−α−1µ

2 (1− η) + α
1

1−α
x

α
1−α (R

2)
−α
1−α−1

¶ > 0

It remains to show that for lowR1 the curve defined by (18) is above the curve defined by (19), and

for large R1 the reverse is true. Clearly, according to (18), R2 approaches infinity when R1 ↓ 1.
According to (18) it is also true that as R1 ↑ ∞ then R2 ↓ 1. To understand the behavior of (19) it
is convenient to write down the condition

2 (1− η)R2 − α
1

1−α

x

¡
R2
¢ −α
1−α = 2ηR1 − α

1
1−α

x

¡
R1
¢ −α
1−α .

Suppose first that R1 ↓ 0. Therefore 2ηR1 − α
1

1−α
x
(R1)

−α
1−α ↓ −∞ since −α

1−α < 0. Hence 2

(1− η) R2 − α
1

1−α
x

(R2)
−α
1−α ↓ −∞ whenever R1 ↓ 0. Therefore it must happen that R2 ↓

0. Suppose this is not the case. Then we could have R2 ↓ R∗ finite and positive. But thenµ
2 (1− η)R2 − α

1
1−α
x
(R2)

−α
1−α

¶
has a finite limit and so for a sufficient small R1 the equality

Ã
2 (1− η)R2 − α

1
1−α

x

¡
R2
¢ −α
1−α

!
= 2ηR1 − α

1
1−α

x

¡
R1
¢ −α
1−α

is not satisfied. Since the curve is strictly increasing, R2 cannot go to +∞ when R1 goes to 0.

Hence, when R1 ↓ 0 then R2 ↓ 0 and so the curve tends towards the origin. Also, at R1 = 1 the
value of R2 is finite. Therefore, at R1 = 1 + ε with ε > 0 and small the first curve is strictly

above the second curve. Also, when R1 ↑ +∞ we will have that R2 ↑ +∞ . Otherwise, if

R2 ↑ R∗∗ < +∞, the expression 2 (1− η)R2 − α
1

1−α
x
(R2)

−α
1−α goes towards a finite number,

but the expression 2ηR1 − α
1

1−α
x
(R1)

−α
1−α ↑ +∞ when R1 does, therefore the equality should not

hold for sufficiently big R1. Because the curve is strictly increasing, it cannot happen that while

R1 ↑ +∞ then R2 ↓ −∞ . Therefore, for sufficiently large R1 the value of R2 must also be

very large. Therefore the second curve is strictly above the first curve for R1 big. Because of the

monotonicity properties and continuity, there exists a unique pair (R1, R2) where the two curves

intersect. Because of the properties of (18), both R1 and R2 must be strictly greater than one.

Now we show that this pair of interest rates is a stationary equilibrium. To do this we show that

there is an equivalence between this pair of interest rates and the pair (γ1, γ2) ∈ (0, 1)2 that solves
the steady state of the dynamic system in γjt .
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Suppose (R1, R2) is a steady state for the system

2−
µ

α
1

1−α
x

¶Ã
1

(R1t+1)
1

1−α
+ 1

(R2t+1)
1

1−α

!

2−
µ

α
1

1−α
x

¶Ã
1

(R1t)
1

1−α
+ 1

(R2t)
1

1−α

! =
R1tR

2
t

R1t +R2t
;

R1t
R2t

=

2 (1− η)− α
1

1−α

(R2t)
1

1−α x

2η − α
1

1−α

(R1t)
1

1−α (x)

and that Rj > 1. Then, it must be true that 1 = R1R2

R1+R2
and

R1

R2
=
2 (1− η)− α

1
1−α

(R2)
1

1−α (x)

2η − α
1

1−α

(R1)
1

1−α (x)

.

Hence, given that 1− γj = α
1

1−α

(Rj)
1

1−α (x)
and since Rj > 1 it is clear that γj < 1. Recall φ ≡ α

(x)1−α .

Since we assumed that φ < 21−α
£
η1−α + (1− η)1−α

¤
we claim that in this steady state R1 >

φ

(2η)1−α and R
2 > φ

(2(1−η))1−α . To show this, it sufficient to show that the point
bR1 ≡ φ

(2η)1−α ,
bR2 ≡

φ

(2(1−η))1−α is to the left of the intersection of the two curves. To prove this last fact, note that at³ bR1, bR2´ it is true that
φ
³ bR1, bR2´ = −

Ã
2 (1− η) bR2 − α

1
1−α

x

³ bR2´ −α
1−α
!
+ 2η bR1 − α

1
1−α

x

³ bR1´ −α
1−α

= − ((2 (1− η))α φ− φ (2 (1− η))α) + ((2η)α φ− φ (2η)α) = 0

That is, the point
³ bR1, bR2´ lies on the curve defined by φ (R1, R2) = 0. Now we compare bR2 with

R1

R1−1 to see whether this point lies above or below the second, downward sloping curve. We know

that bR2 = φ

(2(1−η))1−α and

bR1bR1 − 1 = φ

(2η)1−α
³

φ

(2η)1−α − 1
´ = φ

φ− (2η)1−α .

Since φ < (2η)1−α + (2 (1− η))1−α then φ − (2η)1−α < (2 (1− η))1−α . Thus, φ

(2(1−η))1−α <

φ

φ−(2η)1−α . Therefore
bR2 < R1

R1−1 and so the point
³ bR1, bR2´ is below the downward sloping curve.

But then the pair (R1, R2) , where the curves intersect, must imply R1 > bR1 and R2 > bR2. This
proves the claim. As a consequence, recalling that 1 − γj = α

1
1−α

(Rj)
1

1−α x
= φ

1
1−α

(Rj)
1

1−α
, it is clear that
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1

(R1)
1

1−α
< 1

φ
1

1−α
2η

and 1

(R2)
1

1−α
< 1

φ
1

1−α
2(1−η)

. Thus

1− γ1 =
φ

1
1−α

(R1)
1

1−α
< 2η and 1− γ2 =

φ
1

1−α

(R2)
1

1−α
< 2 (1− η) ,

which implies that γ1 > 1 − 2η and γ2 > 2η − 1, and therefore γj > 0 for both j. With this in

mind, recall then that

R1

R2
=
2 (1− η)− α

1
1−α

(R2)
1

1−α x

2η − α
1

1−α

(R1)
1

1−α x

=
2 (1− η)− (1− γ2)

2η − (1− γ1)
.

Clearly R1

R2
> 0. Therefore, either 2 (1− η) − (1− γ2) > 0 and 2η − (1− γ1) > 0 or 2 (1− η)

− (1− γ2) < 0 and 2η − (1− γ1) < 0. If the first two inequalities hold, then we have at the

same time that γ2 > 2η − 1 and γ1 > 1 − 2η. If the second two inequalities hold, then we have
at the same time γ2 < 2η − 1 and γ1 < 1 − 2η, but this second case must be ruled out since this
implies that at least one γj is strictly negative. So the first set of inequalities must hold. Given the

definition of γj we have that Rj = α
(1−γj)1−α(x)1−α for every j. Hence

R1

R2
=
(1−γ2)1−α

(1−γ1)1−α and

(1− γ2)
1−α

(1− γ1)1−α
=
2 (1− η)− (1− γ2)

2η − (1− γ1)
=
1− 2η + γ2

2η − 1 + γ1
,

or ¡
1− γ2

¢1−α ¡
2η − 1 + γ1

¢
=
¡
1− 2η + γ2

¢ ¡
1− γ1

¢1−α
,

which is one of the two equations of the dynamic system in γjt (in steady state).

On the other hand, we also had R1 + R2 = R1 R2, equivalent to R1

R2
+ 1 = R1. Replacing we

have

1 +
(1− γ2)

1−α

(1− γ1)1−α
=

α

(1− γ1)1−α (x)1−α
.

But (1−γ
2)
1−α

(1−γ1)1−α =
2(1−η)−(1−γ2)
2η−(1−γ1) =1−2η+γ

2

2η−1+γ1 , and after some algebra we get:

γ1 + γ2 =
α (2η − 1 + γ1)

(1− γ1)1−α (x)1−α

Hence, the values of γj defined above satisfy the two equations that must hold at the steady state
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equilibrium for the system with (γ1t , γ2t ) . Since Rj determines uniquely γj and there is a unique

equilibrium pair (R1, R2) , then the pair (γ1, γ2) which satisfies both equations is also unique.

The converse is also straightforward to show. Suppose there exists a unique pair (γ1, γ2) ,where

γ1 > 1− 2η and γ2 > 2η − 1, satisfying

γ1 + γ2 =
α (2η − 1 + γ1)

(1− γ1)1−α (x)1−α
=
(2η − 1 + γ1)φ

(1− γ1)1−α

and ¡
1− γ2

¢1−α ¡
2η − 1 + γ1

¢
=
¡
1− 2η + γ2

¢ ¡
1− γ1

¢1−α
.

Define Rj ≡ φ

(1−γj)1−α .We need to show that the pair (R
1, R2) satisfies both equations

1 =
R1R2

R1 +R2
,

and

2 (1− η)R2 − φ
1

1−α
¡
R2
¢ −α
1−α = 2ηR1 − φ

1
1−α
¡
R1
¢ −α
1−α ,

which is equivalent to

R2

"
2 (1− η)−

µ
φ

R2

¶ 1
1−α
#
= R1

"
2η −

µ
φ

R1

¶ 1
1−α
#
.

We basically work backwards relative to the first part of the proof. We know that

γ1 + γ2 =
(2η − 1 + γ1)φ

(1− γ1)1−α
=⇒ γ1 + γ2

(2η − 1 + γ1)
=

φ

(1− γ1)1−α
,

and
γ1 + γ2

2η − 1 + γ1
=

γ1 + 2η − 1 + 1− 2η + γ2

2η − 1 + γ1
= 1 +

1− 2η + γ2

2η − 1 + γ1
.

Hence, φ

(1−γ1)1−α =1+
1−2η+γ2
2η−1+γ1 . From the second equation, (1− γ2)

1−α
(2η − 1 + γ1) = (1− 2η + γ2)

(1− γ1)
1−α

, so

1 +
1− 2η + γ2

2η − 1 + γ1
= 1 +

(1− γ2)
1−α

(1− γ1)1−α
.

But 1 + (1−γ
2)
1−α

(1−γ1)1−α is equal to 1 +
φ

(1−γ1)1−α

φ

(1−γ2)1−α
, which in equilibrium is equal to 1 + R1

R2
. Therefore
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the equality φ

(1−γ1)1−α = 1 +
1−2η+γ2
2η−1+γ1 is equivalent to

R1 =
φ

(1− γ1)1−α
= 1 +

1− 2η + γ2

2η − 1 + γ1
= 1 +

R1

R2
=

R2 +R1

R2

so R1R2 = R1 +R2 and the first equation is obtained.

From the second condition in the (γ1, γ2) system, (1− γ2)
1−α

(2η − 1 + γ1) = (1− 2η + γ2)

(1− γ1)
1−α implies after, some algebra, that R1 (2η − 1 + γ1) = R2 (1− 2η + γ2), and then R1

(2η − (1− γ1)) is equal to R2 (2 (1− η)− (1− γ2)) . From the definition of Rj we have 1 − γj

= φ
1

1−α

R
j 1
1−α

. Hence, the equality R1 (2η − (1− γ1)) = R2 (2 (1− η)− (1− γ2)) is equivalent to

R1

Ã
2η − φ

1
1−α

(R1)
1

1−α

!
= R2

Ã
2 (1− η)− φ

1
1−α

(R2)
1

1−α

!
,

which is the second equation we wanted to get. This completes the proof of uniqueness of steady

state.

We now undertake the proof of uniqueness of equilibrium in two steps, one corresponding to

the case η < 1
2
and the other to the case η > 1

2
(the case η = 1

2
is trivial). Recall that γ1 > 1− 2η,

and γ2 > 2η − 1.
• Case 1: η > 1

2
.

This implies that 2η − 1 > 0 and so γ2 > 0. Hence it remains to show in this case that γ1 > 0

> 1− 2η. To do this, recall that the dynamic system in (γ1t , γ2t ) can be written as:

γ1t+1 + γ2t+1 =
φ (γ1t + 2η − 1)
(1− γ1t )

1−α ,

¡
1− γ1t

¢1−α ¡
γ2t + 1− 2η

¢
=
¡
1− γ2t

¢1−α ¡
γ1t + 2η − 1

¢
.

The second equation can also be expressed one period forward as

¡
1− γ1t+1

¢1−α ¡
γ2t+1 + 1− 2η

¢
=
¡
1− γ2t+1

¢1−α ¡
γ1t+1 + 2η − 1

¢
and from the first equation we get both γ2t+1 =

φ(γ1t+2η−1)
(1−γ1t)

1−α − γ1t+1 and 1 − γ2t+1 = 1 + γ1t+1 −
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φ(γ1t+2η−1)
(1−γ1t)

1−α . Replacing these two expressions in the last equation we get:

¡
1− γ1t+1

¢1−αµφ (γ1t + 2η − 1)
(1− γ1t )

1−α − γ1t+1 + 1− 2η
¶

=

µ
1 + γ1t+1 −

φ (γ1t + 2η − 1)
(1− γ1t )

1−α

¶¡
γ1t+1 + 2η − 1

¢
which is a one-dimensional dynamic system. We already know that this system has two steady

states. One at γ1t+1 = 1− 2η (which is not an equilibrium) and the other one where γ1t+1 > 1− 2η.
The system defines implicitly a curve on the

¡
γ1t , γ

1
t+1

¢
plane. We first show that this curve is

strictly increasing on <2++. We will then show that this curve goes through a point (γ̄, 1), where
γ̄ < 1. These facts will ensure that the equilibrium steady state is in fact the unique possible

equilibrium in this economy.

Lemma 1 Let

F
¡
γ1t+1, γ

1
t

¢ ≡ µ
φ (γ1t + 2η − 1)
(1− γ1t )

1−α − ¡γ1t+1 − 1 + 2η¢¶ ¡1− γ1t+1
¢1−α

−
µ
1 + γ1t+1 −

φ (γ1t + 2η − 1)
(1− γ1t )

1−α

¶1−α ¡
γ1t+1 + 2η − 1

¢
Then the equation F

¡
γ1t+1, γ

1
t

¢
= 0 defines implicitly a curve γ1t+1 as a function of γ1t , and

dγ1t+1
dγ1t

>

0 for γ1t and γ1t+1 greater than or equal to 1− 2η and strictly less than one.

Proof. To show that there is an implicit function, the Implicit Function Theorem ensures that it

is enough to show that Fγ1t+1

¡
γ1t , γ

1
t+1

¢ 6= 0 (we will in fact show that this derivative is strictly

negative). By direct computation:

Fγ1t+1

¡
γ1t+1, γ

1
t

¢
= − ¡1− γ1t+1

¢1−α −µ α (γ1t + 2η − 1)
x1−α (1− γ1t )

1−α −
¡
γ1t+1 − 1 + 2η

¢¶
(1− α)

¡
1− γ1t+1

¢−α
− (1− α)

µ
1 + γ1t+1 −

α (γ1t + 2η − 1)
x1−α (1− γ1t )

1−α

¶−α ¡
γ1t+1 + 2η − 1

¢
−
µ
1 + γ1t+1 −

α (γ1t + 2η − 1)
x1−α (1− γ1t )

1−α

¶1−α
From this expression it is straightforward to see that for any γ1t ≥ 1− 2η, γ1t+1 ≥ 1− 2η, and less
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than one, then Fγ1t+1

¡
γ1t+1, γ

1
t

¢
< 0. This shows that the implicit function is well defined. On the

other hand, to sign the implicit derivative dγ1t+1
dγ1t

we need to get Fγ1t

¡
γ1t+1, γ

1
t

¢
. This is equal to:

Fγ1t

¡
γ1t+1, γ

1
t

¢
= φ

Ã
(1− γ1t )

(1−α)
+ (γ1t + 2η − 1) (1− α) (1− γ1t )

−α

(1− γ1t )
2(1−α)

!
·"¡

1− γ1t+1
¢1−α

+
¡
γ1t+1 + 2η − 1

¢
(1− α)

µ
1 + γ1t+1 − φ

(γ1t + 2η − 1)
(1− γ1t )

1−α

¶−α#

For any γ1t ≥ 1− 2η, γ1t+1 ≥ 1− 2η, and less than one, then Fγ1t

¡
γ1t+1, γ

1
t

¢
> 0. Therefore, by the

Implicit Function Theorem it is obvious that

dγ1t+1
dγ1t

= − Fγ1t

¡
γ1t+1, γ

1
t

¢
Fγ1t+1

¡
γ1t+1, γ

1
t

¢ > 0,
which concludes the proof of this lemma.

The second part shows that this map goes through (γ̄, 1) with γ̄ < 1.

Lemma 2 When γ1t+1 → 1 then γ1t → γ̄ < 1.

Proof. From the equation defining the dynamic system in γ1t take limits on both sides with γ1t+1
→ 1 and γ1t → γ̄.We must have that

(1− 1)1−α
µ
φ (γ̄ + 2η − 1)
(1− γ̄)1−α

− 1 + 1− 2η
¶

=

µ
1 + 1− φ (γ̄ + 2η − 1)

(1− γ̄)1−α

¶
(1 + 2η − 1) .

Given that the left hand side is zero, this is equivalent to 0 = 2η
³
2− φ(γ̄+2η−1)

(1−γ̄)1−α
´
, and given that

η > 0, what this implies is
φ (γ̄ + 2η − 1)
(1− γ̄)1−α

= 2

To get this equality, it is necessary that γ̄ > 1−2η (which is true since the map is strictly increasing)
and that (1− γ̄)1−α > 0, which implies γ̄ < 1 as desired.

Given that the curve γ1t+1 (γ1t ) goes through the 45o line only through two points, one at (1− 2η, 1− 2η)
and another one above this, the two lemmas imply that the curve must cut the 45o line at the second

steady state (the stationary equilibrium) from below. This shows that this steady state is unstable

and so, if γ1 > 0, then it is the unique equilibrium for this economy, since any other combination of
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¡
γ1t , γ

1
t+1

¢
outside the stationary equilibrium leads to either the point (1− 2η, 1− 2η) or to some

value greater than one. Neither of the two situations can be an equilibrium.

It remains to be shown that γ1 > 0. Given the last lemma, it is sufficient to show that when

γ1t+1 = 0 then γ1t > 0. To prove this, recall that the system can be reduced to:

F
¡
γ1t+1, γ

1
t

¢ ≡ µ
φ (γ1t + 2η − 1)
(1− γ1t )

1−α − ¡γ1t+1 − 1 + 2η¢¶ ¡1− γ1t+1
¢1−α

−
µ
1 + γ1t+1 −

φ (γ1t + 2η − 1)
(1− γ1t )

1−α

¶1−α ¡
γ1t+1 + 2η − 1

¢
= 0.

We evaluate F at (0, 0) , which gives

F (0, 0) = (2η − 1) £φ− 1− (1− φ (2η − 1))1−α¤ .
We know that η > 1

2
, so (2η − 1) > 0 holds. Also, we know that F is strictly decreasing in γ1t+1

and strictly increasing in γ1t . Therefore, it is sufficient to show that F (0, 0) < 0. If this is true,

then when γ1t = 0 the corresponding value of γ1t+1 must be strictly negative. But F (0, 0) < 0 if

and only if φ − 1 < (1− φ (2η − 1))1−α . To show that this inequality must hold, we proceed by
contradiction. Suppose then that φ − 1 ≥ (1− φ (2η − 1))1−α = (φ+ 1− 2φη)1−α . However,
since φ < 1

η
(recalling that min

n
1
η
, 1
1−η
o
= 1

η
for η > 1

2
) then φη < 1 and so −2φη > −2, and

so 1 − 2φη > −1. Since 1− α > 0 then (φ+ 1− 2φη)1−α > (φ− 1)1−α . Putting things together
we get that φ − 1 ≥ (1− φ (2η − 1))1−α = (φ+ 1− 2φη)1−α > (φ− 1)1−α . Since 1 − α < 1,

this implies that φ − 1 > 1 or φ > 2. But φ < min
n
1
η
, 1
1−η
o
5 2, a contradiction. Thus, φ− 1 <

(1− φ (2η − 1))1−α as desired. Hence F (0, 0) < 0 and so, when γ1t = 0 then γ1t+1 < 0.
• Case 2: η < 1

2
.

The proof follows similar arguments, so we just sketch part of it. First note that γ1 > 1− 2η >
0. Then it remains to show that γ2 > 0 > 2η − 1. The difference in the procedure is that we will
work with γ2t as the variable instead of γ1t . Recall that the equilibrium conditions are:

pt
pt+1

=

¡
γ1t+1 + γ2t+1

¢
(γ1t + γ2t )

=
qtR

2
t

1 + qt
,

qt =
γ2t + 1− 2η
γ1t + 2η − 1

,
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and ¡
1− γ1t

¢1−α ¡
γ2t + 1− 2η

¢
=
¡
1− γ2t

¢1−α ¡
γ1t + 2η − 1

¢
.

From the first three equations we get¡
γ1t+1 + γ2t+1

¢
(γ1t + γ2t )

=
qt

1 + qt

µ
φ

(1− γ2t )
1−α

¶
=

µ
γ2t + 1− 2η
γ1t + γ2t

¶µ
φ

(1− γ2t )
1−α

¶
Therefore, the dynamic system describing the equilibrium (which is equivalent to the one presented

at the beginning of this proof) is

¡
γ1t+1 + γ2t+1

¢
=

φ (γ2t + 1− 2η)
(1− γ2t )

1−α

¡
1− γ1t

¢1−α ¡
γ2t + 1− 2η

¢
=
¡
1− γ2t

¢1−α ¡
γ1t + 2η − 1

¢
.

We proceed as before, reducing this system to a one-dimensional system in γ2t . From the first

equation

γ1t+1 =
φ (γ2t + 1− 2η)
(1− γ2t )

1−α − γ2t+1; 1− γ1t+1 = 1 + γ2t+1 −
φ (γ2t + 1− 2η)
(1− γ2t )

1−α .

and replacing in the second equation forwarded one period gives:µ
1 + γ2t+1 −

φ (γ2t + 1− 2η)
(1− γ2t )

1−α

¶1−α ¡
γ2t+1 + 1− 2η

¢
=

¡
1− γ2t+1

¢1−αµφ (γ2t + 1− 2η)
(1− γ2t )

1−α − γ2t+1 + 2η − 1
¶
.

We then define

G
¡
γ2t , γ

2
t+1

¢
≡ ¡

1− γ2t+1
¢1−αµφ (γ2t + 1− 2η)

(1− γ2t )
1−α − γ2t+1 + 2η − 1

¶
−
µ
1 + γ2t+1 −

φ (γ2t + 1− 2η)
(1− γ2t )

1−α

¶1−α ¡
γ2t+1 + 1− 2η

¢
.

An equilibrium path is characterized by G
¡
γ2t , γ

2
t+1

¢
= 0, which implicitly defines a function

γ2t+1 (γ
2
t ) provided that the conditions for the Implicit Function Theorem hold. Following identical

arguments as in the lemma before, it can be shown that Gγ2t+1

¡
γ2t , γ

2
t+1

¢
< 0 and Gγ2t

¡
γ2t , γ

2
t+1

¢
>
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0 for all γ2t and γ2t+1 less than one and strictly greater than 2η − 1. Hence γ2t+1 (γ2t ) is well defined
and dγ2t+1

dγ2t
> 0. In a similar fashion as in case 1, it is easy to prove that if γ2t+1 → 1 then γ2t → bγ <

1, which implies that the steady state γ2 > 2η − 1 is locally unstable. This concludes the proof of
the proposition.¥

A.5 Pareto optimality of the steady state equilibrium in the economy with
banks, markets, and a central bank

The central planner chooses a steady-state equilibrium allocation of the resources available in the

economy, subject to the constraints imposed by nature on the total amount of output, and the by

technology used to transform inputs into output. The central planner, however, is not subject to

the environmental constraints imposed by limited diversification in each island, and spatial sepa-

ration and limited communication. We solve the problem of a central planner who maximizes the

expected utility of lenders, young and old, at time t, subject to the constraint of providing a fixed

level of utility to borrowers.

Let d represent the (steady-state) amount of consumption good available to each young agent

of region j. The central planner must allocate d between investment (recall that agents consume

only when old) and consumption for the current old generation. Let γj represent the fraction of

available resources destined to finance old agents consumption. The remaining fraction (1− γj)

is invested in the random technology. The amount of resources available to the planner at a given

time includes the return from the investment of the previous period in the amount of (1− γs)Rs,

where s indicates the region where the investment outcome is successful. The total amount of

resources available to the planner in a given period is then (γ1 + γ2)+(1− γs)Rs.Finally, assume

that the planner transfers a lump-sum amount to entrepreneurs. Let this amount be denoted by T̂j.

For notational convenience, recall that the population of lenders in each region has unit measure,

let Tj ≡ Tj
2
.

The planner maximizes the expected utility of lenders subject to providing a level bTj of utility
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to borrowers. We can rewrite this problem as22

max
γ1,γ2

η ln
£¡
γ1 + γ2

¢
d+

£¡
1− γ1

¢
d
¤α − 2T1¤

+(1− η) ln
£¡
γ1 + γ2

¢
d+

£¡
1− γ2

¢
d
¤α − 2T2¤ .

The first-order conditions to this problem are given by

η

c (s1)

h
d− α

¡
1− γ1

¢α−1
dα
i
+
1− η

c (s2)
d = 0,

η

c (s1)
d+

1− η

c (s2)

h
d− α

¡
1− γ2

¢α−1
dα
i
= 0,

where c (s) ≡ (γ1 + γ2) d+ [(1− γs) d]α − 2Ts. Therefore,

d

·
η

c (s1)
+
1− η

c (s2)

¸
=

η

c (s1)
α
¡
1− γ1

¢α−1
dα =

1− η

c (s2)
α
¡
1− γ2

¢α−1
dα.

The last expression implies that

η

c (s1)

c (s2)

1− η
=

α (1− γ2)
α−1

dα

α (1− γ1)α−1 dα
=

α (1− γ2)
α−1

dα−1

α (1− γ1)α−1 dα−1
=

µ
1− γ1

1− γ2

¶1−α
. (20)

This is one of the conditions that characterizes the solution to the planner’s problem, stating that at

optimum
1− η

c (s2)
=

η

c (s1)

µ
1− γ2

1− γ1

¶1−α
.

This expression implies that

η

c (s1)
+
1− η

c (s2)
=

η

c (s1)

"
1 +

µ
1− γ2

1− γ1

¶1−α#

We also had

d

·
η

c (s1)
+
1− η

c (s2)

¸
=

η

c (s1)
α
¡
1− γ1

¢α−1
dα,

so
ηd

c (s1)

"
1 +

µ
1− γ2

1− γ1

¶1−α#
=

η

c (s1)
α
¡
1− γ1

¢α−1
dα.

22 We maintain this notation to keep the notation close to that of the decentralized problem analyzed in Section
5. It would of course be equivalent to solve the problem of the planner in terms of island-wide allocations, rather
than region-wise allocations.
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Since η > 0 and c (s1) > 0 we can rewrite the last expression as

1 +

µ
1− γ2

1− γ1

¶1−α
= α

¡
1− γ1

¢α−1
dα−1 =

α

[d (1− γ1)]1−α
. (21)

Equations (20) and (21) define the solution to the planner problem. We now relate equations

(20) and (21) to the decentralized solution obtained in the main text, and show that it is exactly

the solution to the planner problem. Recall that in the economy with banks, asset markets, and the

central bank we had R1t (s1) = qtR
2
t (s2), which in steady state is equivalent to

1

q
=

R2

R1

We also showed that in this stationary equilibrium that:

1 +
(1− γ2)

1−α

(1− γ1)1−α
=

α

(1− γ1)1−α x1−α
(22)

holds. In addition, the equilibrium conditions imply that

MRSj
1,2 =

η

rj (s1)

rj (s2)

1− η
=

³
1
q
+ 1
´
γj + 1

q
(1− γj)Rj (s1) + (1− γj)Rj (s2)

(1 + q) γj + (1− γj)Rj (s1) + q (1− γj)Rj (s2)
,

and that ³
1
q
+ 1
´
γj + 1

q
(1− γj)Rj (s1) + (1− γj)Rj (s2)

(1 + q) γj + (1− γj)Rj (s1) + q (1− γj)Rj (s2)
=
1

q
,

so 1
q
is the marginal rate of substitution between consumption in state s1 and state s2.We also know

that R2
R1
is equal to the ratio f 0(k2)

f 0(k1)
=

f 0(1−γ2)
f 0(1−γ1) =

α(1−γ2)α−1dα−1
α(1−γ1)α−1dα−1 . Hence, in equilibrium:

η

rj (s1)

rj (s2)

1− η
=

α (1− γ2)
α−1

dα−1

α (1− γ1)α−1 dα−1
(23)

holds. Now note that in equilibrium each lender in region s receives η (s)Rsd, but it is easy to

show that η (s)Rs = γ1+γ2+Rs(1−γs)
2

, and therefore

η (s)Rsd =

µ
γ1 + γ2

2

¶
d+

α ((1− γs) d)α

2
.

With this expression it is not difficult to see that the First Welfare Theorem holds here.

Suppose that
¡
γ1eq, γ

2
eq

¢
are the equilibrium allocations. Hence, they satisfy equations (22) and
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(23). Define

γjop ≡ γjeq, bTj ≡ £¡1− γjeq
¢
d
¤α
(1− α)

2

Note that if γjop satisfies equation (23) then it immediately satisfies (20). The same holds true for

equations (22) and (21). Finally, note that in equilibrium we have that c1 (s) =
³
γ1eq+γ

2
eq

2

´
d +

α((1−γseq)d)
α

2
, and, given our definitions,

α
¡¡
1− γseq

¢
d
¢α

2
=

α
¡¡
1− γsop

¢
d
¢α

2
=

¡¡
1− γsop

¢
d
¢α

2
(α− 1 + 1) =

=

¡¡
1− γsop

¢
d
¢α

2
− (1− α)

¡¡
1− γsop

¢
d
¢α

2
=

¡¡
1− γsop

¢
d
¢α

2
− bTj.

This shows that the constructed allocation
¡
γjop
¢2
j=1

, and the constructed transfers
³bTj´2

j=1
satisfy

all the conditions for
¡
γjop
¢2
j=1
to be the solution of the Pareto problem, which proves the result.
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