Hemispheric Specialization in Human Dorsal Frontal Cortex and Medial Temporal Lobe for Verbal and Nonverbal Memory Encoding

William M. Kelley,*² # Francis M. Miezini,* Kathleen B. McDermott,*² Randy L. Buckner,*²§ Marcus E. Raichle,*² Neal J. Cohen,* John M. Ollinger,* Erbil Akbudak,³ Thomas E. Conturo,¹ Abraham Z. Snyder,* and Steven E. Petersen,*²³§

*Department of Neurology and Neurological Surgery
†Department of Radiology
‡Department of Anatomy and Neurobiology
Washington University School of Medicine
St. Louis, Missouri 63110
§Department of Psychology
Washington University
St. Louis, Missouri 63130
∥Department of Psychology and the Beckman Institute
University of Illinois
Champaign, Illinois 61820

Summary

The involvement of dorsal frontal and medial temporal regions during the encoding of words, namable line-drawn objects, and unfamiliar faces was examined using functional magnetic resonance imaging (fMRI). Robust dorsal frontal activations were observed in each instance, but lateralization was strongly dependent on the materials being encoded. Encoding of words produced left-lateralized dorsal frontal activation, whereas encoding of unfamiliar faces produced homologous right-lateralized activation. Encoding of namable objects, which are amenable to both verbal and nonverbal encoding, yielded bilateral dorsal frontal activation. A similar pattern of results was observed in the medial temporal lobe. These results indicate that regions in both hemispheres underlie human long-term memory encoding, and these regions can be engaged differentially according to the nature of the material being encoded.

Introduction

Human neuropsychological and functional neuroimaging studies have highlighted the importance of both frontal cortex and medial temporal lobe structures in long-term memory processes (Scoville and Milner, 1957; Janowsky et al., 1989; Squire et al., 1992; Cohen and Eichenbaum, 1993; Tulving et al., 1994; Shimamura, 1995; Buckner et al., 1995). However, the specific roles of these regions in mnemonic processes is still a matter of considerable debate (Swick and Knight, 1996; Rugg et al., 1996; Schacter et al., 1996; Gabrieli et al., 1997; Buckner et al., 1998a, 1998b).

Neuropsychological findings have suggested material-specific lateralization of brain involvement in memory processes, with greater left medial temporal lobe involvement for verbal materials and greater right medial temporal lobe involvement for nonverbal materials (Miller, 1971, 1972, 1982).

By contrast, material-specific laterality effects have only rarely been observed in imaging studies of memory processes (e.g., Martin et al., 1997). Instead, neuroimaging findings have suggested brain lateralization according to the temporal stage of memory processing. One of the most consistent findings from functional imaging studies has been greater left frontal lobe involvement across a wide range of tasks that promote long-term memory encoding and greater right frontal lobe involvement during memory retrieval tasks (Tulving et al., 1994; Nyberg et al., 1996; Buckner and Koutstaal, 1998). The present study focuses on encoding and attempts to address the apparent inconsistency between neuropsychological and functional imaging findings. The effects of several different encoding conditions on activations in frontal cortex and the medial temporal lobe are examined.

Results

Experiment 1

In Experiment 1, three encoding conditions were examined in which materials differed along two dimensions: (1) how easily a verbal label could be applied to each item, and (2) how much nonverbal, pictorial detail was represented in each item. In all conditions, subjects were instructed to remember the items for a later memory test (i.e., intentional encoding). During the three separate encoding conditions, subjects were shown visual words, namable line-drawn objects, or unfamiliar faces (Figure 1A). The word-encoding task was expected to depend upon verbal processing. The namable object-encoding task was expected to depend upon both verbal and nonverbal processing. The face-encoding task was expected to depend upon nonverbal processing, as unfamiliar faces are visually complex, and no preexisting verbal label is available (Meadows, 1974).

Behavioral Results

Accurate performance on a subsequent yes/no recognition memory test was used as an indication that successful encoding occurred. Recognition accuracy (expressed as percent correct), averaged across subjects, was 74% for the words (70% hits, 22% false alarms), 83% for the objects (81% hits, 15% false alarms), and 74% for the faces (68% hits, 20% false alarms). An analysis of variance (ANOVA) revealed a significant main effect of material type (F[2,8] = 5.91, p < 0.05) and no significant main effect of order (F[1,4] = 4.09, p > 0.1). The interaction was not significant (F < 1). Post-hoc statistical tests revealed significant differences in performance across the recognition tasks. The percentage of correctly classified objects was significantly greater than the percentage of correctly classified words (F[1,4] = 8.42, p < 0.05) and the percentage of correctly classified faces (F[1,4] = 9.28, p < 0.05). There was no significant difference between word recognition and face recognition (F < 1).
Figure 1B shows significant dorsal frontal activations for each encoding condition averaged across the five subjects in Experiment 1. In the word-encoding task, significant activation was observed in left dorsal frontal cortex at or near Brodmann area 6 or 44. The object-encoding task produced significant bilateral activation in homologous dorsal frontal regions. The face-encoding task produced significant activation in right dorsal frontal cortex.

To explore more directly the behavior of these regions, signal intensity for both left and right dorsal frontal cortex was compared across each encoding condition. An ANOVA examining effects of hemisphere (right/left), encoding task (word/object/face), and the hemisphere-by-task interaction term revealed a significant main effect of encoding condition (F[2,8] = 8.97, p < 0.01) and a significant interaction between hemisphere and condition (F[2,8] = 38.97, p < 0.0005). Post-hoc statistical tests revealed that the word- and face-encoding tasks produced different patterns of activation across the hemispheres (Figure 1C). Word encoding produced greater left than right dorsal frontal activation (F[1,4] = 38.85, p < 0.0005), whereas face encoding produced greater right than left dorsal frontal activation (F[1,4] = 39.01, p < 0.0005). There was no significant magnitude difference across hemispheres for object encoding (F < 1). There were also significant effects of encoding condition within hemisphere. Both word encoding and object encoding produced greater left dorsal frontal activation than did face encoding (words F[1,4] = 54.48, p < 0.0005; objects F[1,4] = 27.29, p < 0.001). Face encoding and object encoding produced greater right dorsal frontal activation than did word encoding (faces F[1,4] = 25.98, p < 0.005; objects F[1,4] = 13.76, p < 0.001). Thus, the pattern of results that was qualitatively observed in the statistical z-maps was statistically present in an analysis of the hemisphere-by-task interaction and direct comparisons across encoding conditions.

Activation maps created from individual statistical images revealed the same pattern of activation in each of the five subjects (Figure 2A). Moreover, in each subject, the signal intensity for left dorsal frontal cortex was greater than right dorsal frontal cortex during word encoding, while the signal intensity for right dorsal frontal cortex was greater than left dorsal frontal cortex during face encoding (Figure 2B). Thus, clear differential activation of dorsal frontal regions occurred during encoding tasks that used different stimuli.

A similar, but not identical, pattern of activation was observed in the medial temporal lobe within or near the hippocampal formation (Figure 3A). Right medial temporal regions, like right dorsal frontal regions, were activated preferentially by the object- and face-encoding tasks. However, all three encoding tasks produced significant activation in left medial temporal regions.

Signal intensities for left and right medial temporal regions were compared across each encoding condition. An ANOVA examining effects of hemisphere (right/ left), encoding task (word/object/face), and the hemisphere-by-task interaction term revealed a significant...
Hemispheric Specialization for Verbal/Nonverbal Encoding

Figure 2. Dorsal Frontal Responses in Experiment 1 for Individual Subjects during Each Encoding Task

(A) Coronal sections from two individual subjects show dorsal frontal regions significantly activated in each encoding task relative to fixation. Images are in the Talairach and Tournoux (1988) atlas space. Colored pixels exceeded the statistical threshold and are superimposed on corresponding anatomy images. The left side of each image corresponds to the left side of the brain. In each subject, word encoding yielded a significant left-lateralized dorsal frontal activation, object encoding produced significant bilateral activation, and face encoding produced a significant right-lateralized activation. These effects were readily apparent in each of the five subjects examined.

(B) Percent signal change in left (L) and right (R) dorsal frontal cortex for all five subjects individually. Graphs from left to right correspond to word, object, and face encoding in comparison to fixation. Each line corresponds to left and right signal intensities from one subject. All five subjects showed greater left than right activation during word encoding and greater right than left activation during face encoding.

main effect of task \(F[2,8] = 18.04, p < 0.005 \) and a significant interaction between hemisphere and task \(F[2,8] = 69.98, p < 0.0001 \).

Post-hoc comparisons revealed that the word- and face-encoding tasks produced different patterns of activation across the hemispheres (Figure 3B). Word encoding produced greater left than right medial temporal activation \(F[1,4] = 38.85, p < 0.0001 \), whereas face encoding produced greater right than left medial temporal activation \(F[1,4] = 39.01, p < 0.0001 \). There was no significant magnitude difference across hemispheres for object encoding \(F[1,4] = 3.19, p > 0.1 \). There were also significant effects of encoding conditions within hemisphere. In the left medial temporal region, object encoding produced greater activation than did face encoding \(F[1,4] = 9.59, p < 0.05 \). However, the difference between word encoding and face encoding was not significant. This was the only statistical exception to the pattern of activation observed in dorsal frontal cortex. In the right medial temporal region, face encoding produced greater activation than both word encoding \(F[1,4] = 246.48, p < 0.0001 \) and object encoding \(F[1,4] = 22.42, p < 0.005 \). The difference between object encoding and word encoding was also significant \(F[1,4] = 120.21, p < 0.0001 \).

Figure 4 and Table 1 summarize significant activations in other brain regions that were observed during each encoding condition. Many of these activations were located bilaterally in primary and extrastriate visual cortex. Qualitatively, the object- and face-encoding tasks appeared to produce greater activity than the word-encoding task in these regions. The word-encoding task appeared to produce stronger left than right fusiform activation. All three tasks produced activation in posterior parietal cortex. Additional activations were noted in left inferior frontal cortex and supplementary motor area (SMA) for the word- and object-encoding tasks. The face-encoding task produced weak activations in right inferior frontal cortex and SMA that did not reach statistical significance.

Experiment 2
To replicate and extend the observations in Experiment 1, five additional subjects were examined during a second experiment. To confirm the findings from Experiment 1, subjects were scanned during identical intentional encoding conditions. To ensure that the frontal and medial temporal lobe activations observed in Experiment 1 were not caused simply by the presentation of the materials, subjects were also scanned during three passive viewing conditions. In the passive viewing conditions, subjects were asked to view words, objects, and faces without further task demands.

Behavioral Results
As expected, subjects showed greater recognition for items from the intentional encoding conditions than for items from the passive viewing conditions \(F[1,4] = \)
In the left hemisphere, word encoding produced greater activation than did face encoding in dorsal frontal cortex (F[1,4] = 133.75, p < 0.0001), but there was no significant difference between word and face encoding in the medial temporal region (F = 3.04, p > 0.1). Object encoding produced greater activation than face encoding (F[1,4] = 72.44, p < 0.0001) and greater activation than both word encoding (F[1,4] = 41.45, p < 0.0005) and face encoding (F[1,4] = 66.91, p < 0.0001) in the left medial temporal region. In the right hemisphere, object and face encoding produced greater activation than did word encoding in both regions (all p < 0.0001).

The passive viewing tasks produced much weaker activations that were not consistent with this activation pattern. With one exception (passive word viewing produced greater left than right dorsal frontal activation, F[1,4] = 18.01, p < 0.005), there were no significant effects for any of the post-hoc comparisons performed on the passive viewing conditions.

When intentional encoding and passive viewing conditions were compared directly, several significant differences were noted. There was an overall main effect of encoding instruction (intentional encoding versus passive viewing) for both regions (dorsal frontal F[1,4] = 166.42, p < 0.0005; medial temporal F[1,4] = 66.75, p < 0.002). Further post-hoc analyses revealed significant differences in both dorsal frontal cortex and the medial temporal region between intentional word encoding and face encoding (F[1,4] = 3.04, p > 0.1; object encoding (19, −33, −8), and face encoding (17, −35, −2) and in the right medial temporal lobe for object encoding (19, −33, −7) and face encoding (19, −35, 0).

fMRI Results

Figure 5 shows signal intensities in dorsal frontal and medial temporal lobe regions for encoding and passive viewing conditions averaged across the five control subjects. An ANOVA examining effects of stimulus material (word/object/face), instruction (intentional encoding/passive viewing), and hemisphere (left/right) was performed on both regions. Several results are notable.

The pattern of activations observed in dorsal frontal cortex and medial temporal lobe structures during the intentional encoding conditions replicated the results described in Experiment 1. For both regions, the ANOVA revealed significantly greater left than right activation for the word-encoding task (dorsal frontal F[1,4] = 154.78, p < 0.0001; medial temporal F[1,4] = 66.30, p < 0.0001), significant bilateral activations of comparable magnitude for the object-encoding task (dorsal frontal F[1,4] = 4.94, p > 0.05; medial temporal F < 1), and significantly greater right than left activation for the face-encoding task (dorsal frontal F[1,4] = 83.54, p < 0.0001; medial temporal F[1,4] = 83.99, p < 0.0001). The effects of encoding conditions within hemisphere also replicated the results observed in Experiment 1. In the left hemisphere, word encoding produced greater activation than did face encoding in dorsal frontal cortex (F[1,4] = 133.75, p < 0.0001), but there was no significant difference between word and face encoding in the medial temporal region (F = 3.04, p > 0.1). Object encoding produced greater activation than face encoding (F[1,4] = 72.44, p < 0.0001) and greater activation than both word encoding (F[1,4] = 41.45, p < 0.0005) and face encoding (F[1,4] = 66.91, p < 0.0001) in the left medial temporal region. In the right hemisphere, object and face encoding produced greater activation than did word encoding in both regions (all p < 0.0001).

The passive viewing tasks produced much weaker activations that were not consistent with this activation pattern. With one exception (passive word viewing produced greater left than right dorsal frontal activation, F[1,4] = 18.01, p < 0.005), there were no significant effects for any of the post-hoc comparisons performed on the passive viewing conditions.

When intentional encoding and passive viewing conditions were compared directly, several significant differences were noted. There was an overall main effect of encoding instruction (intentional encoding versus passive viewing) for both regions (dorsal frontal F[1,4] = 166.42, p < 0.0005; medial temporal F[1,4] = 66.75, p < 0.002). Further post-hoc analyses revealed significant differences in both dorsal frontal cortex and the medial temporal region between intentional word encoding and face encoding.
Hemispheric Specialization for Verbal/Nonverbal Encoding

Discussion

Encoding tasks that placed varying demands on verbal and nonverbal processing were used to assess responses in frontal and medial temporal lobe regions. Hemispheric specialization was observed for both regions. We consider each region separately.

Dorsal Frontal Cortex

Dorsal frontal cortex showed left-lateralized activation during word encoding, bilateral activation during object encoding, and right-lateralized activation during face encoding. The greater activation of left dorsal frontal cortex for the encoding of words is consistent with results from several neuroimaging studies that report left dorsal frontal activations during tasks that promote encoding of verbal materials (Kapur et al., 1994; Demb et al., 1995; Kapur et al., 1996; Dolan et al., 1997; Buckner and Koutstaal, 1998). By contrast, the greater activation of right dorsal frontal cortex during the encoding of unfamiliar faces presumably reflects processes more directly related to the encoding of nonverbal information. Consistent with this view, Klingberg and Roland (1998) also report activation of right dorsal frontal cortex during tasks that encourage encoding of nonverbal information. The encoding of namable objects produced dorsal frontal activation in both hemispheres. Interestingly, memory performance was greatest for the namable objects and may reflect encoding enhancement for materials that have access to dual codes (Paivio and Csapo, 1973) and, as revealed by our data, access to bilateral frontal processing.

While studies that have examined verbal encoding tasks consistently report left-lateralized frontal activations, three previous imaging studies have examined encoding of faces but have variously reported left, right, and bilateral frontal activations (Grady et al., 1995; Haxby et al., 1995, 1996; Courtney et al., 1997). In one experiment, Grady, Haxby, and colleagues compared a face-encoding task to a face-matching task. In both the word- and object-encoding conditions, clear activation was observed in SMA (A), left posterior parietal cortex (B), left inferior frontal cortex (C), posterior visual cortex (D), and left fusiform gyrus (E). The object-encoding condition produced additional activations in right posterior parietal cortex (B) and right fusiform gyrus (E). In the face-encoding condition, clear activation was observed in left and right posterior parietal cortex (B), posterior visual cortex (D), and left and right fusiform gyrus (E).

Several factors make it difficult to reconcile these findings with the current data. First, most of the frontal passive word viewing in the left hemisphere (left dorsal frontal $F(1,4) = 105.32, p < 0.0001$; left medial temporal region $F(1,4) = 52.32, p < 0.0001$), intentional face encoding and passive face viewing in the right hemisphere (right dorsal frontal $F(1,4) = 70.54, p < 0.0001$; right medial temporal region $F(1,4) = 96.21, p < 0.0001$), and intentional object encoding and passive object viewing in both hemispheres (left dorsal frontal $F(1,4) = 69.79, p < 0.0001$; right dorsal frontal $F(1,4) = 110.93, p < 0.0001$; left medial temporal region $F(1,4) = 78.53, p < 0.0001$; right medial temporal region $F(1,4) = 71.96, p < 0.0001$).

In a prior study of face working memory, which was also likely to encourage long-term memory encoding, Haxby and colleagues examined the effects of delay interval on frontal responses (Haxby et al., 1995). At short delay intervals (1 s), a right-lateralized frontal response was observed; at longer delays (6 s), the response shifted to a left frontal region. In a subsequent face working memory study, Courtney and colleagues observed across-subject variance with right, left, and sometimes bilateral frontal activation in different subjects (Courtney et al., 1997).

Several factors make it difficult to reconcile these findings with the current data. First, most of the frontal...
responses reported in these studies were inferior to the frontal responses observed here and may represent frontal regions that are distinct from the dorsal frontal regions described in the present study. Dorsal frontal activations of the kind reported here and elsewhere (Kapur et al., 1996; Dolan and Fletcher, 1997; Buckner and Koutstaal, 1998) were not observed in either hemisphere in two of the earlier studies of face encoding and face working memory. In the face working memory study that did report dorsal frontal activations (Courtney et al., 1997), the relative contribution (regression coefficient) of the right dorsal frontal region was greatest for face encoding, whereas the relative contribution of the left dorsal frontal region was greatest across the delay interval (when no face was present).

Second, the encoding tasks employed across these three studies differed from the current one along several dimensions. For example, in the face-encoding study by Grady, Haxby, and colleagues, subjects viewed 32 faces during each encoding scan and were allowed 4 s to encode each face. In the present study, subjects were presented with twice the number of faces during each face-encoding scan and were allowed only 2 s to encode each face. We suspect that such differences might affect the choice of encoding strategies adopted to successfully encode faces. For example, allowing 4 s to process each face may permit the use of verbal-based encoding strategies. At shorter presentation rates, adoption of verbal-based encoding strategies may become less effective. This might also explain the shift from right to left frontal activity in both the earlier studies of face encoding and face working memory. In the face working memory study by Haxby and colleagues observed in their working memory study as delay interval increased. In fact, Haxby and colleagues attribute this shift in lateralization to a change in encoding strategy. They suggest that right prefrontal activity reflects reliance on a nonverbal, icon-like representation of a face when delay intervals are brief, whereas left prefrontal activity potentially reflects verbal rehearsal of descriptions or facial features that can be used more effectively when delay intervals are long. Thus, lateralization of frontal activity may be sensitive to both the kind of material being operated on and the encoding strategies encouraged by the task.

Although we obtained robust dorsal frontal activations...
under intentional encoding conditions but not under passive viewing conditions that produced some incidental encoding, it is not likely that the intentional/incidental variable dictates whether activation will be observed in dorsal frontal cortex. Several studies have reported robust, left dorsal frontal activations during tasks that encourage incidental encoding of verbal materials (Kapur et al., 1994; Demb et al., 1995; Buckner and Koutstaal, 1998). Such tasks do not require explicit memorization but are nonetheless excellent verbal encoding tasks because of the strong demands they place on effortful verbal processing. The passive viewing tasks used in the present study did not require effortful processing and thus produced weak incidental encoding. Our claim then is that tasks requiring effortful processing activate regions in dorsal frontal cortex; different types of effortful processing, which tend to be invoked differentially by different stimulus types, activate regions in different hemispheres of dorsal frontal cortex.

Collectively, these results suggest that there exist multiple frontal regions that allow different kinds of information to be encoded. The hemispheric asymmetry in dorsal frontal cortex for verbal and nonverbal encoding, particularly the strong right bias for face encoding, is inconsistent with the encoding aspect of the Hemispheric Encoding/Retrieval (HERA) model. Originally, the HERA model was based on imaging findings that examined encoding of verbal materials (Tulving et al., 1994). The HERA model, in its current form, suggests that left frontal regions may be preferentially involved in memory encoding, irrespective of the type of information to be processed (Nyberg et al., 1996).

Medial Temporal Lobe

Similar hemispheric asymmetries were noted in medial temporal lobe structures within or near the hippocampal formation. The greater left than right involvement during word encoding and the greater right than left involvement during face encoding are consistent with the laterality effects reported by Martin and colleagues (1997) for verbal and visual aspects of word and object encoding, and with neuropsychological work showing asymmetries in verbal versus nonverbal memory deficits following left versus right medial temporal lobe damage (Milner, 1971, 1972, 1982). However, in both the present study and the study by Martin and colleagues, left medial temporal lobe structures were activated by all material types (both verbal and nonverbal). In fact, namable objects produced stronger activation of left medial temporal lobe structures than words and faces in the present study and words and nonsense objects in the Martin et al. (1997) study. This suggests that the preferred material for left medial temporal lobe structures may be material that combines both verbal and visual attributes. This

Table 1. Identification of BOLD Signal Increases during Encoding Tasks versus Fixation

<table>
<thead>
<tr>
<th>Brain region</th>
<th>Word Encoding</th>
<th>Object Encoding</th>
<th>Face Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fusiform gyrus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left BA 37</td>
<td>−43, −61, −12</td>
<td>5.95</td>
<td></td>
</tr>
<tr>
<td>Right BA 37</td>
<td>−35, −55, −17</td>
<td>5.61</td>
<td></td>
</tr>
<tr>
<td>Left BA 18</td>
<td>−41, −61, −12</td>
<td>3.41</td>
<td></td>
</tr>
<tr>
<td>Right BA 18</td>
<td>−33, −85, −17</td>
<td>2.98</td>
<td></td>
</tr>
<tr>
<td>Lateral occipital cortex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left BA 18</td>
<td>−33, −85, −2</td>
<td>7.43</td>
<td></td>
</tr>
<tr>
<td>Right BA 18</td>
<td>−23, −89, 8</td>
<td>9.19</td>
<td></td>
</tr>
<tr>
<td>Right BA 19</td>
<td>−37, −81, 9</td>
<td>6.01</td>
<td></td>
</tr>
<tr>
<td>Medial occipital cortex</td>
<td>−2, −77, 0</td>
<td>4.83</td>
<td></td>
</tr>
<tr>
<td>Left BA 17/18</td>
<td>−17, −93, −7</td>
<td>6.38</td>
<td></td>
</tr>
<tr>
<td>Right BA 17/18</td>
<td>−16, −98, 3</td>
<td>6.76</td>
<td></td>
</tr>
<tr>
<td>Inferior frontal cortex</td>
<td>−49, 29, 6</td>
<td>5.93</td>
<td></td>
</tr>
<tr>
<td>Left BA 44/45</td>
<td>−48, 26, 6</td>
<td>2.74</td>
<td></td>
</tr>
<tr>
<td>Posterior parietal cortex</td>
<td>−27, −67, 54</td>
<td>2.58</td>
<td></td>
</tr>
<tr>
<td>Left BA 7/40</td>
<td>−20, −65, 46</td>
<td>4.10</td>
<td>−34, −51, 54</td>
</tr>
<tr>
<td>Right BA 7/40</td>
<td>−27, −63, 47</td>
<td>2.91</td>
<td>−29, −61, 53</td>
</tr>
<tr>
<td>Supplementary motor area</td>
<td>−5, 5, 54</td>
<td>2.45</td>
<td></td>
</tr>
<tr>
<td>BA 6/32</td>
<td>−4, 3, 49</td>
<td>2.47</td>
<td></td>
</tr>
</tbody>
</table>

Activations determined to be significant (p < 0.001) are listed for each encoding condition along with the best estimate of their location. BA, approximate Brodmann area location. Coordinates are from the Talairach and Tournoux (1988) atlas. Locations of activations are defined based on the functional responses superimposed on averaged anatomical MRI images and are referenced to the Talairach atlas.
also contrasts with the strong left bias observed in dorsal frontal cortex for verbal materials. Right medial temporal lobe structures responded poorly to pure verbal materials and instead showed preference for visual materials. Thus, regions in the right medial temporal lobe appear to be specialized for the processing of visual rather than verbal attributes. Regions in the left medial temporal lobe, at least for these studies, do not appear to be as specialized for any particular material type.

Other studies have reported unilateral activations in medial temporal regions. For example, previous studies of face encoding (Grady et al., 1995; Haxby et al., 1996) report right, but not left, medial temporal activation. By contrast, Dolan and Fletcher (1997) report left, but not right, medial temporal activation related to the encoding of verbal materials. However, several functional imaging studies have failed to detect medial temporal lobe involvement in experiments designed to produce encoding of verbal materials (Kapur et al., 1994; Fletcher et al., 1995; Buckner and Koutstaal, 1998). Moreover, while some imaging studies have reported bilateral medial temporal lobe involvement during encoding of novel visual stimuli, such as complex scenes (Stern et al., 1996; Tulving et al., 1996; Gabrieli et al., 1997), these studies did not report the laterality effects (right > left) observed here and elsewhere (Grady et al., 1995; Haxby et al., 1996) for faces.

The pattern of activation shown here suggests that medial temporal lobe regions can be modulated by both material type and task instruction. Therefore, a more systematic exploration of the relation between medial temporal lobe activity and both the nature of the materials to be remembered and the encoding strategies employed may help to clarify what have thus far been inconsistent findings in the literature.

Conclusions

We have demonstrated, with a simple design and reliable data, that the nature of the materials to be memorized (words versus objects versus faces) and the manner in which the materials are to be processed (intentional encoding versus passive viewing) are critical in determining the relative hemispheric contributions of the dorsal frontal region and, to a similar extent, the medial temporal lobe. The results lend themselves to a straightforward verbal/nonverbal processing distinction. These results are also consistent with multiple code views of encoding that have not been demonstrated previously with imaging. Presumably, these effects are mediated by the choice of encoding strategies encouraged by the materials and task and the specific encoding operations that ensue. For example, the absence of a preexisting verbal label for unfamiliar faces likely promotes the use of nonverbal encoding for the face stimuli, whereas having dual codes available for the namable objects permits the use of both verbal and nonverbal encoding for the object stimuli (Paivio and Csapo, 1973). What we have shown here is that such factors can exert control over the brain regions activated during memory encoding in normal subjects.

Experimental Procedures

Subjects

Ten subjects (six male, four female) between the ages of 18 and 23 were recruited from the local Washington University community. All subjects were strongly right-handed as measured by the Edinburgh handedness inventory (Raczkowski et al., 1974), without any significant abnormal neurological history, and were normal or corrected-to-normal in visual acuity. Subjects were paid $25 for each hour of their participation and gave informed consent in accordance with guidelines set by the Human Studies Committee of Washington University.

Functional Imaging

Imaging was performed on a Siemens 1.5 Tesla Vision System (Erlangen, Germany). Visual stimuli were generated using an Apple Power Macintosh computer and the program PsyScope (Cohen et al., 1993). Stimuli were projected to subjects with a Sharp LCD projector (model XGE850) onto a screen positioned at the head end of the bore. Subjects viewed the screen through a mirror. A fiber-optic, light-sensitive key press interfaced with the PsyScope Button Box (Carnegie Mellon University, Pittsburgh, PA) was used to record subjects’ behavioral performance. A thermoplastic face mask was used to minimize head movement.

Structural images were acquired using a sagittal MP-RAGE three-dimensional T1-weighted sequence (repetition time (TR) = 9.7 ms, echo time (TE) = 4 ms, flip angle α = 12°, inversion time (TI) = 300 ms, voxel size 1.25 × 1 × 1 mm). Functional images were collected in runs using an asymmetric spin-echo echo-planar sequence sensitive to blood oxygenation level-dependent (BOLD) contrast (T2*) (TR = 2500 ms, T2* evolution time = 50 ms, α = 90°). During each functional run, 102 sets of 16 contiguous, 8-mm-thick axial images were acquired parallel to the anterior-posterior commissure plane (3.75 × 3.75 mm in-plane resolution), allowing complete brain coverage at a high signal-to-noise ratio (Conturo et al., 1996, Soc. Neurosci., abstract). Motion artifact was examined and corrected automatically within each functional run and across runs using a rigid-body rotation and translation correction (Friston et al., 1994; Snyder, 1996).

Behavioral Tasks

Two separate studies were conducted. In Experiment 1, five subjects (three male, two female) were scanned while performing three encoding tasks: visual word encoding, line-drawn object encoding, and face encoding. A recognition memory test was administered after the third encoding task. This sequence was then repeated so that each subject performed six memory-encoding tasks and two recognition tests. Visual words (3-10 letters in length) were presented during the word-encoding tasks (Geneva font; letters subtended ~0.5° of visual angle). Namable line-drawn objects (Snodgrass and Vanderwart, 1980) were presented during the object-encoding scans (this set contained objects with naming agreement > 60%, mean = 91%). Unfamiliar faces were presented during the face-encoding scans (Cohen et al., submitted). When presented on the screen, the objects and faces subtended ~6° of visual angle vertically and ~6° horizontally. Each functional run lasted 255 s and was comprised of seven blocks; four of these were “task” blocks and three were “fixation” blocks. The task and fixation blocks alternated. Each task block lasted 40 s; each fixation block lasted 25 s. Sixteen items were presented during each task block (2000 ms stimulus duration, 500 ms interstimulus interval). Task instructions were to pay careful attention to each item for a later memory test. During the fixation blocks, a cross-hair was present and instructions were to fixate. Within an individual run, only one type of item (words, objects, or faces) was presented during the four task blocks. Task order (word encoding, object encoding, and face encoding) was varied across subjects.

In Experiment 2, five additional subjects (three male, two female) performed both intentional encoding and passive viewing tasks. Two subjects performed intentional encoding tasks during the first three runs and passive viewing tasks during the remaining three runs. The three intentional encoding tasks (words, objects, and faces) were identical to the encoding tasks described above. Following the encoding runs, subjects were given a recognition memory test. After the memory test was completed, the subjects were informed that the memory portion of the experiment had ended. During the remaining three runs, subjects passively viewed words, objects, and faces. Procedurally, this phase was identical to the intentional encoding phase; the two phases differed only in the
instructions given to the subjects. For the passive viewing condi-
tions, subjects were instructed to examine each item but were told
that they would not be required to remember them. Contrary to these
instructions, a “surprise” recognition memory test was administered
following the three passive viewing runs. For the remaining three
subjects, the task order was reversed; subjects performed the three
passive viewing tasks first and the three intentional encoding tasks
second.

Data Analysis
Unpaired t tests between task and fixation blocks were used to
compute images of z-statistics for each encoding condition. Individ-
ual subject z-images were then transformed into standardized atlas
space based on the Talairach and Tournoux atlas (1988) and aver-
gaged across subjects to create a mean z-image for each encoding
condition (corrected for multiple comparisons; Ollinger, 1997, Int.
single-voxel regions and ensures that p < 0.001, where p is the
probability of a single erroneous activation in the image volume. An
automated peak-search algorithm (Mintun et al., 1989) identified the
location of peak activations based on z-value and cluster size.

To compare signal intensities across the encoding conditions in
an unbiased manner, regions of interest were defined as follows.
For each subject, a difference image comparing task blocks from
all three encoding conditions to the fixation blocks was created
(word encoding + object encoding + face encoding versus fixation).
In this manner, each encoding condition contributed equally to each
subject’s difference image. In Experiment 2, a combined difference
image comparing task blocks from all six conditions (three inten-
tional encoding and three passive viewing) to fixation was created
for each subject. An overall group image was also created for each
experiment by averaging the five individual difference images.

The maximum difference peaks were identified within the left and
right frontal cortex and the left and right medial temporal lobe in
each subject’s combined difference image (with the constraint that
the activation was within 10 mm of the overall group focus obtained
from each experiment). Spherical regions (3 mm radius) were defined
around each of these peak activations, and mean percent signal
change for each separate task comparison (e.g., word encoding
versus fixation) was then computed for the right and left frontal
and medial temporal lobe regions in each subject and used for ANOVAs.

Acknowledgments
We thank R. Althoff, L. Counts, G. Foster, and J. Ojemann for their
assistance and H. Roddiger for helpful comments on this manu-
script. This work was supported by National Institutes of Health
grants (NS32979 and NS06883), the Charles A. Dana Foundation,
and the McDonnell Center for Higher Brain Function.

Received March 13, 1998; revised April 28, 1998.

References
studies of encoding, priming, and explicit memory retrieval. Proc.
Natl. Acad. Sci. USA 95, 891-898.
Buckner, R.L., Petersen, S.E., Ojemann, J.G., Miezir, F.M., Squire,
Buckner, R.L., Koutstaal, W., Schacter, D.L., Wagner, A.D., and Ro-
using fMRI II. Retrieval effort versus retrieval success. Neuroimage,
in press.
Buckner, R.L., Koutstaal, W., Schacter, D.L., Dale, A.M., Rotte, M.,
retrieval using fMRI II. Selective averaging of event-related fMRI
tests to test the retrieval success hypothesis. Neuroimage, in press.
Scope: a new graphic interactive environment for designing psy-
chology experiments. Behav. Res. Methods Instrum. Comput. 25,
257-271.
the Hippocampal System (Cambridge, MA: MIT Press).
Transient and sustained activity in a distributed neural system for
Demb, J.B., Desmond, J.E., Wagner, A.D., Vaidya, C.J., Glover, G.H.,
the left inferior prefrontal cortex: a functional MRI study of task
Dolan, R.J., and Fletcher, P.C. (1997). Dissociating prefrontal and
hippocampal function in episodic memory encoding. Nature 388,
582-585.
Fletcher, P.C., Frith, C.D., Garside, P.M., Shallice, T., Frackowiak,
R.S.J., and Dolan, R.J. (1998). Brain systems for encoding and re-
trieving auditory-verbal memory: an in vivo study in humans. Brain
118, 401-416.
Separate neural bases of two fundamental memory pro-
cesses in the human medial temporal lobe. Science 276, 264-266.
Grady, C.L., McIntosh, A.R., Horwitz, B., Maisog, J.M., Ungerleider,
related reductions in human recognition memory due to impaired
encoding. Science 269, 218-221.
Haxby, J.V., Ungerleider, L.G., Horwitz, B., Rapoport, S.I., and Grady,
C.L. (1995). Hemispheric differences in neural systems for face work-
Haxby, J.V., Ungerleider, L.G., Horwitz, B., Maisog, J.M., Rapoport,
S.I., and Grady, C.L. (1996). Face encoding and recognition in the
memory impairments in patients with frontal lobe lesions. Neuropsy-
chologia 27, 1043-1056.
Kapur, S., Craik, F.I.M., Tulving, E., Wilson, A.A., Houle, S., and
Brown, G. (1994). Neuroanatomical correlates of encoding in epi-
sodic memory; levels of processing effect. Proc. Natl. Acad. Sci.
USA 91, 2008-2011.
Kapur, S., Tulving, E., Cabeza, R., McIntosh, A.R., Houle, S., Craik,
during encoding, but not during retrieval, in a non-verbal paired-
human medial temporal lobe activity by form, meaning, and ex-
perience. Hippocampus 7, 587-593.
Milner, B. (1971). Interhemispheric differences in the localization of
Milner, B. (1972). Disorders of learning and memory after temporal
Milner, B. (1982). Some cognitive effects of frontal lobe lesions in
method of localizing regions of neuronal activity in the human brain
with positron emission tomography. J. Cereb. Blood Flow Metab. 9,
96-103.
Nyberg, L., Cabeza, R., Tulving, E. (1996). PET studies of encod-
ing and retrieval: the HERA model. Psychonom. Bull. Rev. 3,
135-148.
imagery or dual coding? Cogn. Psychol. 6, 176-206.
validity of some handedness questionnaire items. Neuropsychologia
6, 43-47.
Rugg, M.D., Fletcher, P.C., Frith, C.D., Frackowiak, R.S., and Dolan,
R.J. (1996). Differential activation of the prefrontal cortex in success-
ful and unsuccessful memory retrieval. Brain 119, 2073-2083.

