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Abstract

Despite wide recognition of their significant role in explaining sustained growth and economic devel-
opment, uncompensated knowledge spillovers have not yet been fully modeled with a microeconomic
foundation. This paper illustrates the exchange of knowledge as well as its consequences for agglomer-
ative activity in a general-equilibrium search-theoretic framework. Agents, possessing differentiated types
of knowledge, search for partners to exchange ideas in order to improve production efficacy. Contrary to
previous work, we demonstrate that a decentralized equilibrium may be underpopulated or overpopulated
and underselective or overselective in knowledge exchange, compared to the social optimum.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Uncompensated knowledge spillovers have played a central role in explaining sustained
growth and economic development. In their pioneering work, Romer [28] and Lucas [22] de-
velop models in which the positive external effects of society’s aggregate knowledge or human
capital stock promote economic growth. The incorporation of this type of positive externality has
resulted in abundant research in the areas of growth and development. These insights, however,
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raise many important but unsettled questions. How do knowledge spillovers occur? What are the
consequences of knowledge spillovers for the advancement and concentration of economic activ-
ity? Lucas points out that interaction among economic agents is the key for the development of
knowledge: “human capital accumulation is a social activity involving groups of people” (p. 19).
Given that interaction serves to promote both knowledge acquisition and creation, various types
of economic clusters may emerge as economic organizations to foster the transmission of infor-
mation. The present paper is devoted to examining these important but largely open issues.

Our paper establishes a microfoundation to explain the patterns and implications of knowl-
edge exchange. Knowledge exchange involves an interpersonal externality: “if one man starts
a new idea, it is taken up by others and combined with suggestions of their own; and thus it
becomes the source of new ideas.” (Marshall [23, p. 352]). Kuznets [20] echoes this view by
emphasizing: “creative effort flourishes in a dense intellectual atmosphere, and it is hardly ac-
cident that the locus of intellectual progress lies in the larger cities; . . . the possibility of more
intensive intellectual contact . . . afforded by greater numbers may be an important factor in step-
ping up the rate of additions to new knowledge” (pp. 328–329).1 These arguments suggest that
agglomeration promotes the transmission of knowledge due to lower costs of communication
in dense environments and fosters growth. Yet, despite the clearly important role of geography
for the propagation of knowledge, spatial considerations have received limited attention in the
theoretical literature. We attempt to fill this gap by developing a simple search-theoretic model
particularly suitable for analyzing the knowledge transmission mechanism and its interactions
with agglomerative activity. We believe the random-matching model to be the most appropriate
for studying these issues because it provides an explicit notion of transactions costs (search and
entry frictions) and patterns of interaction (knowledge exchange). The latter aspect, in particular,
allows us to analyze the relationships between endogenous knowledge exchange and endogenous
population agglomeration.

In our economy, agents, such as individual consumers/workers, firms and patent holders, pos-
sess horizontally differentiated types of knowledge and search for partners to exchange ideas, so
as to improve production efficacy. We consider that heterogeneity (in terms of different types of
knowledge) plays a role in the transfer of knowledge. When individuals’ types of knowledge are
too diverse, a match is associated with less knowledge exchange, perhaps due to communication
difficulties. In contrast, little is obtained through collaboration when individuals’ types are too
similar. Thus, even by assuming that agents meet according to a random-meeting technology,
our two-sided matching model differs sharply from the conventional random-matching model
because we endogenously determine the range of agents with whom an individual will undertake
knowledge exchange, hereafter called the knowledge spread. The endogenous determination of
the knowledge spread in turn influences the endogenous process of matching. By characteriz-
ing the role of heterogeneity for the flow of ideas for matching and knowledge exchange, our

1 Jacobs [17] also stresses that knowledge spillovers are the primary force for agglomeration, such as city formation,
firm clustering, and geographical concentration of research activity. More recently, Rauch [27] and Saxenian [29] pro-
vide empirical evidence that cities promote the transmission of knowledge. Jaffe et al. [18] show that patents are more
likely to cite previous patents from the same area. Audretsch and Feldman [3] find that even after controlling for the
geographical concentration of production, innovative activity clusters more in industries where knowledge spillovers are
crucial. Glaeser et al. [13] and Henderson et al. [16] suggest that spillovers occur both within and between industries.
Ciccone and Hall [7] document that local increasing returns resulting from geographical concentration can explain more
than half of labor productivity variation across US states.
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structure provides insights into questions regarding human capital accumulation, the patterns of
information flows, and their interactions with agglomerative activity.

We consider two models, a basic framework in which the size of the population is fixed and an
unrestricted-entry framework where the patterns of knowledge exchange and the spatial agglom-
eration of a local economy are simultaneously determined. We begin by describing the findings
from our fixed population model. First, economies with higher search or market frictions will
have more diversified patterns of exchange so that individuals will obtain more, but generally
less effective, interactions with others. Second, the extent of agglomeration will influence an
economy’s pattern of information flows and development. In particular, larger populations sup-
port more selective patterns of knowledge exchange. However, the level of productivity in the
economy has no impact on the patterns of information sharing. Notably, we show this latter
finding will not occur in the unrestricted-entry model where the extent of agglomeration is en-
dogenous along with knowledge exchange. Since higher levels of production efficiency foster
larger populations, individuals will be more selective in exchanging knowledge. Moreover, in re-
sponse to changes in matching, technology and knowledge exchange parameters, the equilibrium
population mass and the equilibrium knowledge spread change in opposite directions, whereas
the equilibrium population mass and the equilibrium per capita knowledge output (which may
be measured by per capita patents in a local economy) change in the same direction. Further-
more, a decentralized equilibrium may be under- or over-populated and under- or over-selective
in knowledge exchange, compared to the social optimum. The result depends crucially on the
extent of a congestion externality (potential migrants do not take into account the effect of their
entry on the total population mass) and a matching externality (unmatched agents do not take
into account the effect of their choices on the pool of potential collaborators and the probability
of matching for other individuals).

Related literature

There have been a number of papers that have emphasized the role of cities in promoting
knowledge spillovers in urban economics. In their pioneering work, Fujita and Ogawa [11] con-
struct a “locational potential function” in which firms’ profits are lower when they are located
farther apart. Importantly, they show how such externalities can be responsible for different types
of urban configurations. Berliant, Peng and Wang [4] extend their model to examine urban struc-
tures in the presence of uncompensated inter-firm knowledge spillovers which decrease with the
distance between firms. However, both regard the mechanism of knowledge spillovers as ex-
ogenously given, thereby ruling out any two-way interactions between endogenous patterns of
knowledge transmission and population agglomeration. This unexplored issue is the main fo-
cus of the present paper. In another related paper, Glaeser [12] considers the role of cities for
the propagation of knowledge. His focus, however, is more on the role of cities in promoting
knowledge acquisition by younger, less skilled workers from older and more skilled workers. In
contrast, we focus on the potential to learn from individuals with different types of knowledge or
ideas as a stimulus for the evolution of knowledge and agglomeration.

Our work is also connected with previous contributions by Helsley and Strange [14,15] which
study the role of matching for agglomeration economies. Although Helsley and Strange [14]
demonstrate how agglomeration results from a matching process between firms and hetero-
geneous workers in a system of cities, our framework emphasizes that knowledge exchange
provides the driving force for agglomeration. In addition, our model is explicitly dynamic. We
also conduct both positive and normative analyses by characterizing the decentralized equilib-
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rium as well as the social optimum. Helsley and Strange [15] study a model of matching between
intermediate inputs and entrepreneurs in which firms attempt to take their new projects to market
in anticipation of receiving ex-post monopoly rents. Although this latter paper and our paper both
emphasize the role of knowledge for population agglomeration, our models are entirely different.
While they construct a deterministic intermediate input matching model, we develop a two-sided
random-matching framework to provide a microfoundation for knowledge exchange.2

2. The basic structure of the economy

This section specifies the economic environment and outlines the mechanisms through which
knowledge spillovers occur among agents. We use a continuous-time framework where each
infinitely-lived agent has an identical discount rate of r > 0.

2.1. Economic agents

Our goal is to investigate the impact of heterogeneity on the patterns of knowledge accu-
mulation, as well as its interactions with agglomerative activity. We emphasize the ‘horizontal’
aspects of knowledge rather than its ‘vertical’ aspects.3 Each agent is endowed with a specific
type of knowledge from the set κ which embodies the set of ideas or types of knowledge that
society has available. We refer to κ as the “knowledge space” of the economy. The knowledge
space may contain any fields of relevance, such as art, biology, history, physics, and economics.
As agents in this economy might be regarded as individual workers/consumers, firms, or patent
holders, one could interpret k ∈ κ as an individual’s primary field of expertise.

We make the following additional assumptions about the economy. First, there is a continuum
of agents in the economy with a total population of Lebesgue measure N . Second, we assume
that agents’ knowledge types are uniformly distributed across the economy’s knowledge space. In
addition, the knowledge space, κ , is a circle of unit circumference. Figure 1 depicts the knowl-
edge space, where each point along the circle indicates a particular knowledge type with two
specific knowledge types k and k′ highlighted. As we have described, this could represent two
different fields such as art and biology. Finally, note that since N is the total population in the
economy and knowledge types are uniformly distributed across κ , the density of individuals of
each knowledge type is also given by N .

2 The reader may also refer to their paper for a discussion contrasting the models. In particular, there are at least three
additional important differences. First, in our model, agents know the quality of a match before they make their decision
to produce. In their paper, the quality of a match is not known until production occurs. Second, the incentives in the
exchange or creation of knowledge are substantially different. In our paper, the surplus from matching and exchanging
ideas is freely available to both agents. Consequently, the surplus is a pure externality since there are no prices in our
model and the exchange of knowledge is uncompensated. Finally, we consider that production (the matching surplus) is
a non-monotone function of the difference in agent characteristics while they assume it is monotonically decreasing in
the difference between matching characteristics. Thus, it is clear that neither framework is a special case of the other and
there is no obvious mapping between the equilibrium concepts and the predictions of the two models.

3 Jovanovic and Rob [19] study the diffusion and growth of knowledge in a model where agents exhibit heterogeneity
in the “vertical” aspects of knowledge (i.e., of the same type but of different quality). Our approach differs from theirs as
we emphasize the “horizontal” aspects of knowledge and allow for interactions between knowledge exchange decisions
and agglomerative activities.
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Fig. 1. Knowledge space and selection of knowledge spread.

2.2. Intellectual exchange

Agents can meet with others, collaborate and share their knowledge, which enables them
to produce more effectively when matched. To begin, consider two individuals k and k′ ∈ κ

currently matched and exchanging information with each other. Obviously, heterogeneity among
agents plays an important role in the transfer of knowledge. To model the effects of heterogeneity
on the knowledge exchange process, we consider the following possibility. When individuals are
too alike, they cannot accomplish much and little knowledge will be obtained. In contrast, if
individuals are too different, they will not have productive exchange. This latter point can be
envisioned by contemplating the results of a match between a brain surgeon and an opera singer,
as they have little in common to communicate and hence nothing to exchange.

Therefore, it is important to define a distance measure in the knowledge space. Let the knowl-
edge distance between k and k′ ∈ κ be measured by the Euclidean metric d(k, k′).4 Under our
construction regarding the efficacy of knowledge exchange, it is natural to assert that there is an
optimal level of idea-diversity among agents denoted by δ. Here, we initially assume δ > 0 and
hence knowledge exchange is increasing in d for d < δ but decreasing in d for d > δ.5

The additional knowledge obtained by an individual k, when collaborating with another indi-
vidual k′, is denoted as S(k, k′) and is given by:

S(k, k′) = q0 + s0
(
a0 − a1

∣∣δ − d(k, k′)
∣∣). (1)

The term q0 refers to the additional knowledge that an agent obtains from a match independent of
the knowledge type of a partner. The parameter a1 reflects the sensitivity of knowledge exchange
to heterogeneity among agents with different types of expertise or ideas. Finally, a0 reflects the
maximum increase in production that results from differences in ideas while s0 is a positive

4 In general, one may define an individual’s knowledge expertise as a set. Such a generalization would, however, require
the adoption of the Hausdorff metric to measure the knowledge distance between different sets of individual knowledge.
For simplicity, the present paper labels agents by a single point representing their expertise, allowing us to adopt the
conventional Euclidean metric to measure the distance between two individuals in knowledge space.

5 See Appendix A where we show that our results are robust to the alternative possibility that knowledge exchange is
monotonically more effective when agents are more alike (i.e., δ = 0).
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Fig. 2. Role of heterogeneity for knowledge creation.

scaling factor for knowledge exchange. We assume throughout that each parameter in S(k, k′) is
non-negative.

We illustrate the role of heterogeneity among agents for knowledge exchange in Fig. 2. This
figure is depicted from the perspective of an individual of knowledge type k, where the horizontal
axis represents the set of knowledge types that the individual may meet and the vertical axis
gives the flow value of matching with each type of agent. Figure 2 emphasizes that agents would
generate the most new knowledge upon producing with an individual who is δ units away in idea
space. For an individual of knowledge type k, Fig. 2 shows that the best matches would occur
upon meeting with either an individual of knowledge type k − δ or k + δ. This setup is just a
simple way of attempting to uncover the impact of heterogeneity among agents on the process of
knowledge exchange and human capital accumulation in actual economies.6 Since the additional
knowledge obtained through matching depends on the distance between d(k, k′) and δ, we find
it useful to refer to the distance, |δ − d(k, k′)|, as the match-specific knowledge spread. This
match-specific knowledge spread, denoted as δ(k, k′), measures the distance away from an ideal
match between a pair of agents k and k′ ∈ κ .

2.3. Production and tastes

By meeting and exchanging ideas with each other, individuals enhance their ability to pro-
duce a homogeneous consumption good. With their additional knowledge stock, S(k, k′), agents
produce flow output, y(k, k′) given by:

y(k, k′) = AS(k, k′) (2)

6 Admittedly, our structure has two limitations in order to provide tractability. On the one hand, we do not allow for an
individual-specific quality measure which may play a role in affecting the efficacy of knowledge exchange (e.g., a high
ability agent may gain little from a low ability agent regardless of their knowledge heterogeneity). On the other, new
knowledge obtained from matching does not permanently augment an individual’s human capital level.
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where A > 0 is a scaling factor capturing the overall level of technology in the economy. In
addition, everyone in the economy has the same preferences over the homogeneous consumption
good with flow utility given by:

u(y) = y (3)

where y is the consumption of output which occurs upon matching and creating new knowledge.
There is no disutility of effort. Moreover, flow utility is intertemporally separable. Individuals
make choices, as described below, to maximize their expected lifetime utility.

2.4. Meetings

In our economy, each agent enters as unmatched to search for a partner to exchange ideas. Un-
matched agents meet via a random-meeting technology. Let U denote the mass of unmatched in-
dividuals and let M denote the mass of matched individuals in the economy, where M = N −U .
In order to illustrate how a dense economic environment fosters more opportunities for interac-
tion, we assume that the flow of meetings is given by a well-defined, random-meeting technology
that resembles the standard random-matching technology in the search literature. That is, the ag-
gregate number of meetings per unit of time is given by a function m that has as its first argument
the number of unmatched agents who can be in the first position of a meeting, and as its second
argument the number of unmatched agents who can be in the second position. If there were two
distinct populations, then the two positions or arguments could differ in a feasible allocation.
However, since our agents meet symmetrically (in that any agent can meet with any other), at a
feasible allocation the number of eligible agents in each argument of m is the same.

Specifically, we write m(U,U ′), where m is strictly increasing and concave in each argument
and homogeneous of degree γ > 1 (exhibiting increasing returns to scale) and where m satisfies
standard boundary conditions m(U,0) = m(0,U ′) = 0. We can thus rewrite the random-meeting
technology for feasible allocations (U = U ′) as: m(U,U) = Uγ m(1,1). This follows the spec-
ification in Diamond [8], implying that the flow probability for an unmatched agent to locate
another is higher in economies with a higher population density of unmatched agents. For fea-
sible allocations, symmetry makes this flow meeting rate resemble the arrival rate of meetings
in one-sided search and matching models—thus, we will use the terms flow meeting rate and
arrival rate interchangeably. More explicitly, denoting this arrival rate per unmatched individual
by μ, we have μ(U) = m(U,U)/U = Uγ−1m(1,1). (It is the arrival rate for each individual
that is important in each agent’s optimization problem.) When we come to solving the model
analytically, we will for simplicity make the assumption that γ = 2, under which the arrival rate
becomes linear in the mass of unmatched agents: μ(U) = αU , with α ≡ m(1,1) > 0 measuring
the arrival intensity.7 Meeting is costly—there is a stochastic amount of time agents wait to meet
others—as long as α is finite.

Empirically, there is evidence suggesting that the matching technology in the labor market
may exhibit constant or increasing returns to scale. For example, Blanchard and Diamond [5] use
national-level US data to estimate the aggregate matching function and find it either of constant

7 Note that we could also allow for decreasing returns to scale in the meeting technology if γ ∈ (0,1). Under this inter-
pretation, there would be congestion in meeting. Although allowing for decreasing returns is possible in our framework,
it is clearly not appropriate for our study and does not appear to be relevant empirically. (See the discussion that follows
in the next paragraph of the text.)
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or mild increasing returns. Constructing the matching function from disaggregate individual-
level US data, Anderson and Burgess [2] lend support to increasing returns in labor matching
functions at the state level.8 In the context of micro matching for individual knowledge exchange
and agglomeration, casual empirics seem to be more favorable toward increasing returns. The
basic idea is straightforward: with a larger mass of individuals residing in a given physical area,
individuals interact more frequently, which results in a higher arrival rate of potential partners for
knowledge exchange. The idea that population density may stimulate knowledge exchange and
production is emphasized in Kuznets [20] and Jacobs [17], as illustrated in the introduction.
One could also interpret the arrival rate μ as the inverse of the amount of time it takes for
information flows to accrue across sectors in an economy rather than an explicit search-theoretic
interpretation, which is still consistent with our random-matching framework.9

Further, given the effects of heterogeneity on the efficacy of knowledge exchange in this
economy, it is important to distinguish between meetings and matches. Meetings occur be-
tween any two agents with flow probability μ(U) = αU , but only a subset of meetings result
in matches. Agents do not want to produce with individuals whose areas of expertise are too
alike or too different, since such a match would result in less effective knowledge exchange. This
is reflected in the match-specific knowledge spread, δ(k, k′). Note that an agent’s optimal match-
specific knowledge spread with no transactions cost is δ(k, k′) = 0. Due to the expected delay
between meetings, individuals will accept matches with a positive match-specific knowledge
spread. Agents will not accept all matches, however, because individuals cannot meet other po-
tential partners while matched and separation is not instantaneous. Thus, individuals will choose
a range of acceptable matches, reflecting a trade-off between the quantity and quality of matches.

Throughout the paper, we will focus only on steady-state pure-strategy symmetric Nash equi-
libria. We hereafter refer to the individual agent’s choice of acceptable matches simply as the
knowledge spread, δk , which is the lifetime utility maximizing match-specific knowledge spread
to agent k with any agent k′ ∈ κ . As illustrated in Fig. 2, the choice of δk leads to acceptance by
an agent of type k of matches in two intervals, [k −δ−δk, k−δ+δk] and [k +δ−δk, k+δ+δk].
The agent’s knowledge spread, in turn, affects the frequency of matches. We therefore denote the
endogenous flow probability of a match for an individual agent k as β(δk;U). Of course, as we
demonstrate below, β(δk;U) < μ(U).

As mentioned above, β(δk;U) will depend on the range of types of knowledge that an agent
k accepts for intellectual exchange. Specifically, k will select a range of agents with whom to
exchange ideas given by:

R(k) ≡ [
k − δ − δk, k − max

{
0, δ − δk

}] ∪ [
k + max

{
0, δ − δk

}
, k + δ + δk

]
(4)

as depicted in Fig. 1. Two agents match if and only if they meet and both want to match. The
selection over which agents are accepted for matches is restricted to pure-strategy best responses
taking as given the behavior of other agents. It will depend on both the effectiveness of knowledge
exchange and primitives of the economic environment such as the ability of individuals to meet
in the economy. For example, as it becomes easier for unmatched agents to meet, individuals

8 For a comprehensive survey of empirical matching functions, the reader is referred to a recent article by Petrongolo
and Pissarides [25].

9 This is, in fact, the interpretation adopted by Marshall [22, p. 352], “so great are the advantages which people follow-
ing the same skilled trade get from near neighborhood to one another. The mysteries of the trade become no mysteries;
but are as it were in the air, and children learn many of them unconsciously.”
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would be expected to be more selective in the range of agents they will accept for engaging in
knowledge exchange.

2.5. Asset values

Recall that in any time period, agents will either be matched or unmatched. Each state is
associated with a different level of expected lifetime utility because agents’ consumption op-
portunities will vary depending on whether they are currently matched or not. Therefore, let
VMt(k, k′;U) denote the expected lifetime utility for an agent of knowledge type k who is cur-
rently matched with an agent of knowledge type k′ in time period t . The expected lifetime utility
for an unmatched agent of knowledge type k is given by VUt (k;U) in time period t .

We begin by describing the evolution of the expected lifetime utility or continuation value
for an agent of knowledge type k.10 A derivation of the agent’s Bellman equation is easiest to
see by considering time in discrete units of length Δ. Under this time convention and given the
exogenous detachment rate η that follows a Poisson process, the expected lifetime utility for an
agent who is currently matched in time period t is:

VMt = ηΔ[y(k, k′)Δ + VU(t+Δ)] + (1 − ηΔ)[y(k, k′)Δ + VM(t+Δ)]
1 + rΔ

(5)

where the probability that a break-up will occur at the end of the time interval of length Δ is given
by ηΔ.11 Until the break-up occurs, agents are exchanging information and producing. As of time
(t + Δ), the individual will have an expected lifetime utility of VU(t+Δ)(k;U). In contrast, with
probability (1 −ηΔ), agents remain matched and therefore have an expected discounted lifetime
utility of VM(t+Δ)(k, k′;U) as of time (t +Δ). Rearranging (5), dividing by Δ, and taking limits
as Δ → 0 yields:

rVMt = y(k, k′) + η[VUt − VMt ] + V̇Mt . (6)

We study the steady state of the economy. In this setting, the values of all variables are assumed
to be constant over time. In particular, the expected lifetime utility of a matched agent is inde-
pendent of time and, from (6), the Bellman equation for an agent of knowledge type k who is
currently matched with an agent of type k′ is:

rVM(k, k′;U) = y(k, k′) + η
[
VU(k;U) − VM(k, k′;U)

]
. (7)

This implies that the flow value of matches is the sum of the flow output produced based on
new knowledge obtained and the expected capital loss associated with the change of state from
a matched to an unmatched agent. Specifically, as a consequence of the use of steady state, note
that the value of matching is independent of time, which rules out cyclical behavior.

Analogously, we can express the corresponding Bellman equation for unmatched agents of
type k. It is more complicated than that for matched agents, however, because one must specify
the general matching rule in all possible cases concerning the probability of a match between
any pair of agents. We model matching as a non-cooperative game. Specifically, denote by

10 See Diamond and Fudenberg [9] for the construction of analogous evolution equations.
11 An exogenous separation rate provides tractability. We could endogenize the separation rate if the productivity of
each match is not known ex ante and agents update their beliefs regarding the productivity of a match over time. Once an
agent determines that a match is not sufficiently worthwhile, endogenous separation would occur. This extension is not
likely to add more insights into the fundamental issues we study.



78 M. Berliant et al. / Journal of Urban Economics 60 (2006) 69–95
f (k, k′, δk, δk′), the exogenous probability that a match between k and k′ occurs, given their
choices of {δk, δk′ }. This general matching rule is given by:

(i) f (k, k′, δk, δk′) = 1 if k ∈ R(k′) and k′ ∈ R(k);
(ii) f (k, k′, δk, δk′) = f0 ∈ (0,1) if either k ∈ R(k′) and k′ /∈ R(k) or k /∈ R(k′) and k′ ∈ R(k);

(iii) f (k, k′, δk, δk′) = 0 if k /∈ R(k′) and k′ /∈ R(k).

The reason for this added complexity is that there are many equilibria in our endogenous two-
sided matching framework for the case of interest to us: f0 = 0, where matching occurs if and
only if both players desire a match. For example, if both players prefer not to match, k ∈ R(k′)
but k′ /∈ R(k) would yield the same (equilibrium) payoff as k /∈ R(k′) and k′ /∈ R(k). Among
these equilibria, that of interest to us is the symmetric one in which both or neither player wants
a match. Although we could simply select this symmetric equilibrium in an ad hoc manner, we
prefer to use the following equilibrium selection argument. We begin by considering the choice
of δk as the unique dominant pure strategy for k under f0 > 0, which will be symmetric, and
then select the equilibrium in the case of f0 = 0 by taking the limit of equilibria as f0 → 0. In
particular, while f0 > 0 allows the possibility of asymmetric matches, we will select equilibria
at f0 = 0 that are approximated by equilibria where f0 > 0 but where f0 → 0. For the remainder
of the paper, we focus on the case where f0 = 0 but select the robust or symmetric equilibria,
which will turn out to be unique.

In order to determine the continuation value for agent k ∈ κ , VU(k;U), we must digress and
discuss explicitly the game played by unmatched agents at a given time, t . Given the strategies
of other agents, {δk′ }k′∈κ\{k}, agent k chooses δk that in turn determines R(k), to maximize

V U

(
k,U ; {δk′ }k′∈κ

) =
∞∫

0

{
μ(U)e−(r+μ(U))τ

∫
R(k)

[
f (k, k′, δk, δk′)VM(k, k′;U)

+ (
1 − f (k, k′, δk, δk′)

)
VU(k;U)

]
dk′

}
dτ.

We remind the reader that VU(k;U) is the optimized continuation value for an unmatched
agent k, independent of k′. Thus,

V U

(
k,U ; {δk′ }k′∈κ

) = μ(U)

r + μ(U)

{ ∫
R(k)

f (k, k′, δk, δk′)
[
VM(k, k′;U) − VU(k;U)

]
dk′

+ VU(k;U)

}
.

Given the set of knowledge types, the range that an individual of knowledge type k selects for
matching, R(k) = [k − δ − δk, k − max{0, δ − δk}] ∪ [k + max{0, δ − δk}, k + δ + δk], and the
general matching rule, f (k, k′, δk, δk′), the Bellman equation for an unmatched agent of type k

is:

rVU (k;U) = μ(U)max
δk

∫
R(k)

f (k, k′, δk, δk′)
[
VM(k, k′;U) − VU(k;U)

]
dk′. (8)

For ease of the notation, we will refer to agent k’s best response of δk (the argmax of the opti-
mization problem given in equation (8)) as δ̂k . It is important to note that the optimal strategy
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will be chosen by recognizing the trade-off between a higher number of matches (a contact rate
effect) and more effective matches (a knowledge efficacy effect) because knowledge exchange
would not be effective when an agent is matched with agents who are too similar or too differ-
ent.

2.6. Symmetry

In any time period, agents will either be matched or unmatched. Without imposing additional
a priori heterogeneity on the knowledge space, we assume that the distribution of unmatched
(and thus matched) agents is uniform. Constant population in the steady state therefore re-
quires that the inflows and outflows of population in each category are equal in each time
period.

For each type of agent, there is a given mass of unmatched individuals Uk . Also, let Mk denote
the pool of matched agents of type k. From the pool of unmatched agents, the flow probability that
an agent will find a suitable match is given by β(δk;U). Suppressing arguments for notational
convenience, this implies that an outflow of β(δk;U)Uk agents of type k from the unmatched
pool will become matched within the period. In computing the flow probability of a match under
symmetry, β(δ;U), we may therefore write12:

β(δ;U) = μ(U)

(∫R(k) U dk′

U

)
. (9)

Note that the term
∫
R(k)

U dk′ reflects the total mass of individuals that agent k selects as potential
matches.

This is divided by the total mass of unmatched agents to obtain the proportion of unmatched
agents in the economy that agent k selects to try to engage in intellectual exchange. The flow
probability of a match is thus given by the flow probability of a meeting multiplied by the pro-
portion of unmatched agents selected for knowledge exchange.

Throughout, we will assume that:

Assumption 1 (Knowledge Diversity). The optimal level of idea-diversity satisfies: δ � 2(q0 +
s0a0)/(s0a1).

As we demonstrate below, Assumption 1 provides conditions in which agents will not choose
a knowledge spread larger than δ. From (4) and Assumption 1, we obtain:

∫
R(k)

dk′ = 4δ. As a
result, (9) implies that β(δ;U) = 4μ(U)δ.

To study an unmatched agent’s best response, we define his payoff assuming that he can
choose unilaterally whether or not a match occurs. This gives us a particular knowledge spread δ̃.
We will show in Section 3 that δ̃ is in fact a best response to all other types playing δ̃ given our
matching rule (as f0 → 0).

12 In focusing on steady-state equilibrium allocations in our economy, the total mass of unmatched agents, U , will be
constant over time and the flow probability of matching will be the same in each period. Thus, there is no incentive for
individuals to choose a different knowledge spread in each time period.
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Lemma 1 (Unmatched Value). An agent’s unmatched value, given that he can choose his part-
ners unilaterally, is independent of k: V U(k,U ; {δk′ }k′∈κ) is maximized over {δk′ }k′∈κ at δk′ = δ̃

∀k, k′ ∈ κ ;

V U

(
k,U ; {δ̃}k′∈κ

) =
⎧⎨
⎩

4μ(U)δ̃

r+η+4μ(U)δ̃

A
r

(
q0 + s0a0 − 1

2 s0a1δ̃
)
, if δ̃ < δ,

2μ(U)(δ+δ̃)

r+η+2μ(U)(δ+δ̃)

A
r

(
q0 + s0a0 − 1

2 s0a1
δ2+δ̃2

δ+δ̃

)
, if δ̃ � δ.

(10)

Proof. All proofs are in Appendix B. �
Note that by Lemma 1, an agent’s unmatched value function has a kink at δ̃ = δ. Under

Assumption 1, however, this kink will occur when V U(k,U ; {δ̃}k′∈κ) is negative. Therefore,
the value of δ does not affect the agent’s choice of her knowledge spread. This considerably
simplifies the analysis. Appendix A presents some additional technical details for the case where
Assumption 1 does not necessarily hold.

2.7. Steady-state populations

Under symmetry, steady-state equilibrium requires the following equalities in order for the
populations of matched and unmatched agents to remain constant over time:

β(δ;U)U = ηM = η(N − U) (11)

where ηM measures the inflow of agents entering the unmatched pool and the reference to agents
of type k is removed in the interest of a symmetric equilibrium. From (11) and the result that
β(δ;U) = 4μ(U)δ we find

U = η

η + 4μ(U)δ
N, (12)

or, as an implicit function: U = U(δ,N). When μ(U) = αU , U(δ,N) = η/(ηN −4αδ). Individ-
uals regard their own selection of the knowledge spread as having no influence on the steady-state
population of unmatched agents.

3. Steady-state equilibrium

In this section, we focus on determining the steady-state pure-strategy symmetric Nash equi-
librium in the context of an environment where the population mass is exogenously given. This
allows us to highlight the influence of the extent of agglomeration on the knowledge exchange
process, as well as to obtain insights concerning the knowledge spread.

Definition 1 (Steady-State Equilibrium). A non-degenerate, symmetric, steady-state equilibrium
(SSE) is a tuple {{R(k)}k∈κ , δ̂,U} satisfying the following conditions:

(E-1) agents maximize their expected lifetime utilities through their choice of the knowledge
spread, that is, δ̂k is the best response given δ̂k′ , k′ ∈ κ \ {k};

(E-2) equilibrium range of agents for k to exchange ideas: (4);
(E-3) steady-state population: (12);
(E-4) symmetry: δ̂k = δ̂, ∀k ∈ κ ;
(E-5) there is interaction among agents (the steady-state equilibrium is non-degenerate): δ̂ > 0.
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Notice that there is an ex ante optimal level of idea heterogeneity, δ, between any two matched
parties. Based on parameters of the model such as matching rates, agents establish the maximal
distance δ̂ away from δ to match. As illustrated in Fig. 1, this determines the equilibrium range
of agents with whom agent k exchanges ideas. Upon deriving the range of individuals for whom
agents match, we can pin down the degree of diversity of knowledge exchange in this economy in
steady-state equilibrium. Once the equilibrium knowledge spread, δ̂, is determined, the steady-
state populations of matched and unmatched agents can be derived using (12). Symmetry is also
important here. Under the matching rule, only a zero measure of matches take place in which
one individual gains more from matching than his partner. Therefore, in almost all matches that
occur in equilibrium, if an agent of type k wants to match with an agent of type k′, then type k′
also wants to match with type k.

For the remainder of the paper, we assume: μ(U) = αU .

Theorem 1 (Existence and Uniqueness). Suppose that Assumption 1 holds and s0 and a1 are
strictly positive. Then the (non-degenerate) symmetric, steady-state equilibrium exists and is
unique, where the steady-state equilibrium knowledge spread, δ̂ = δ̃ solves the following equa-
tion:

N = r + η

αηδ̂

(
q0 + s0a0 − s0a1δ̂

s0a1δ̂

)2

+ r + η

2α

(
q0 + s0a0 − s0a1δ̂

s0a1δ̂2

)
. (13)

Upon establishing existence of the steady-state equilibrium for the economy, we seek to un-
derstand how the pattern of information flows, as exhibited by the knowledge spread, responds
to the extent of agglomeration, as measured by the exogenous population size in the basic model.
We can show:

Proposition 1 (Effect of the Extent of Agglomeration on the Pattern of Knowledge Exchange
and Per Capita Flow of Matches). Suppose that Assumption 1 holds and s0 and a1 are strictly
positive. In an SSE,

(i) a higher population mass leads to a smaller equilibrium knowledge spread but a greater
per capita flow of matches (βU/N);

(ii) an increase in the degree of matching efficacy (higher α) or a decrease in the rate of match-
ing detachment (lower η) reduces the equilibrium knowledge spread;

(iii) narrower knowledge (higher a1) yields a smaller equilibrium knowledge spread, while
changes in the overall level of technology (A) have no effect on knowledge exchange.

Intuitively, this occurs because the probability of finding other unmatched agents is higher
in economies with a higher population mass. As a consequence, agents are more selective in
knowledge exchange. It can be shown that the effect of the higher population mass dominates
the effects of the smaller knowledge spread which implies that the flow of matches for each
individual agent is higher when N is higher. Thus, our result lends formal theoretical support
to the claim by Pred [26, pp. 128–129], “[i]t is logical that the larger the city, the larger the
number of intentionally and unintentionally overlapping information fields of laborers and other
industrial personnel, the larger the volume of influential short-distance information flows.” Our
model also provides an important testable hypothesis—cities or other economic units with a
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higher population mass will also have a higher per capita measure of innovative activity (such as
patents).13

We next turn to the various effects of matching frictions. An increase in the efficacy of the local
economy’s matching technology is associated with a smaller knowledge spread. When it is easier
for unmatched agents to find potential partners for knowledge exchange, they can concentrate on
finding more productive matches. The effects of the discount rate are similar. If the discount
rate is higher, agents are less patient and therefore less finicky when trying to locate partners.
Additionally, the exogenously given detachment rate is positively associated with more diverse
patterns of knowledge exchange. This occurs because higher values of η imply that matches do
not last as long on average, resulting in a smaller opportunity cost to taking part in relatively less
effective knowledge exchange.

It may be noted that as knowledge itself becomes narrower, knowledge exchange with agents
in other fields becomes less effective. This is captured in our model by a higher penalty for
heterogeneity, which induces agents to become more selective in matching. However, the overall
level of technology has no effect on the equilibrium knowledge spread. A higher level of technol-
ogy raises the productivity of each match, but it also raises the costs of a larger knowledge spread
because agents forfeit production that would have been obtained from more effective knowledge
exchange with other agents.

4. Endogenous population agglomeration

In this section, we discuss equilibrium determination of the population size along with the
steady-state equilibrium knowledge spread. In contrast with the benchmark case investigated in
Section 3, where the population mass is exogenously given, we pin down the equilibrium knowl-
edge spread along with the endogenous population mass. This framework provides numerous
insights into the interactions between the patterns of knowledge exchange and the process of
agglomeration. We demonstrate that these considerations identify new sources of inefficiency
associated with population migration.

With regard to migration decisions, we assume that individuals must account for the fixed
setup costs associated with residing in the city under consideration at the time of entry and that
the long-run expected utility of those not in the city is zero.14 The setup costs may be best thought
of as the costs of housing and land (measured in per capital real terms). We assert that such costs
depend positively on the population mass, N . In this manner, the fixed costs implicitly capture

13 Note that the per capita flow value of matches would also be higher in economies with a larger population since the
knowledge spread would be lower. However, this richer hypothesis would be more difficult to test since it requires a
measure of the commercial value of patents across geographic units.
14 Laing, Palivos and Wang [21] point out that the consideration of a fixed, rather than a flow, entry cost simplifies the
analysis greatly. Specifically, with endogenous entry and the size of city population affecting the flow cost, an additional
cost term and an additional interaction term concerning the change in incremental flow cost in response to the change
in population must be inserted into the two Bellman equations, creating extra complexity without adding any additional
insight into the issues addressed by our paper. (These terms come from application of the product rule from calculus with
further complications due to the integration over time, as in the definition of V U in Section 2.5, with endogenous Poisson
matching rates affecting expected average costs.) The introduction of a flow cost also creates a new state (representing
an agent who has not entered the city and does not pay a cost in each period) and hence an additional Bellman equation.
The two existing Bellman equations must also be modified to account for the choice of an agent to exit the city. Such
complications are not present in our setup with fixed entry cost, since the value of an agent not in the city can simply be
normalized to zero.
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Fig. 3. Equilibrium entry (migration) decisions.

the city congestion effect on existing structures (i.e., a higher N leads to an increase in per capita
real property costs).15 In short, we specify v = v(N) as the per capita entry cost function, where
v is strictly increasing (and convex) in N . In Sections 2 and 3, N was fixed, so v(N) was also
fixed exogenously and thus ignored.

It is convenient to define V ∗
U(δ,U) = V U(k,U ; {δk′ }k′∈κ) where δk′ = δ ∀k′ ∈ κ . Thus, V ∗

U

is independent of k. The reader is referred to Fig. 3 to better understand how the endogenous
population mass is determined. The horizontal axis of Fig. 3 represents different values of the
population mass, N , and the vertical axis provides the different values for an unmatched agent’s
expected lifetime utility and entry cost for each value of N . In our analysis, an agent’s unmatched
value function is expressed in terms of N by substituting for U from the steady-state popula-
tion condition (12). Individuals will continue to migrate as long as V ∗

U(δ;U(δ,N)) � v(N).16

For values of N less than Ñ , V ∗
U(δ;U(δ,N)) > v(N), providing an incentive for agents to

move to the area. If N is greater than Ñ , agents would obtain higher expected lifetime util-
ity by choosing not to migrate to the area. Thus when the extent of agglomeration is such that
V ∗

U(δ;U(δ, Ñ)) = v(Ñ), migration will no longer occur. For these reasons, we refer to the con-
dition that V ∗

U(δ;U(δ, Ñ)) = v(Ñ) as the equilibrium entry condition. It may also be useful to
think of the condition V ∗

U(δ;U(δ, Ñ)) = v(Ñ) as the endogenous population condition. From
the equilibrium entry condition, we can obtain a locus of δ and N where individuals are in-
different between migrating and not migrating. Through this migration choice, the population
mass is pinned down for each possible value of the knowledge spread. In combination with the
knowledge spread locus (to be defined shortly), we are able to obtain a steady-state equilibrium
allowing for endogenous migration.

15 Admittedly, we do not formally model a market for these costs which takes the supply of residential properties into
account. Instead, we incorporate a notion of entry cost that is often employed in search models of the labor market
(see the literature cited in Laing, Palivos and Wang [21]). In the typical labor search model, the equilibrium number of
job vacancies occurs when expected discounted net revenues from filling vacancies are equal to the costs of creating
a vacancy. Such an approach allows us to focus on the matching process between individuals while determining the
equilibrium population mass in a tractable manner.
16 Our model of endogenous migration can be embedded in a model of a system of cities in several ways, but this subject
is beyond the scope of this paper.
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4.1. Steady-state equilibrium with endogenous migration

The elements above forge our definition of a steady-state equilibrium with endogenous mi-
gration.

Definition 2 (Steady-State Equilibrium with Endogenous Migration). A non-degenerate, sym-
metric steady-state equilibrium with endogenous migration (SSEEM) is a SSE {{R(k)}k∈κ , δ̂, Û}
together with a population mass N̂ satisfying the following additional conditions:

(E-6) equilibrium entry: V ∗
U(δ̂k;U(δ̂k, N̂)) = v(N̂) ∀k ∈ κ ;

(E-7) population agglomeration occurs (the steady-state equilibrium is non-degenerate): N̂ > 0.

We illustrate our solution algorithm through the use of Fig. 4 where the horizontal axis repre-
sents the different values of an agent’s knowledge spread and the vertical axis lists values of N .
We first derive the knowledge spread (KS) locus which implicitly determines the choice of the
knowledge spread δ by each agent for a given size of population mass N :

NKS = r + η

αηδ

(
q0 + s0a0 − s0a1δ

s0a1δ

)2

+ r + η

2α

(
q0 + s0a0 − s0a1δ

s0a1δ2

)
. (14)

The KS locus is a downward-sloping curve for any δ > 0, as depicted in Fig. 4. We next deter-
mine the values of δ, U , and N that keep agents indifferent between migrating and not migrating
to the area, i.e., equilibrium entry of agents from Fig. 3. For tractability, we begin our analysis by
focusing our attention on the case where the entry cost function is proportional to the population
size (v(N) = v0N ).17 We refer to the equilibrium entry (EE) locus as the relationship between

Fig. 4. Steady-state equilibrium under endogenous migration (μ(U) = αU).

17 Our results can be generalized to the case of increasing, convex functional forms for the entry cost function. We
present the proportional case here because it is the most tractable. As pointed out by a referee, since the reservation
utility level is normalized to zero in our model, all surplus generated in a city is spent on housing in equilibrium. It is
easy to generalize our model to allow a positive reservation utility level, thus generating a positive level of numeráire
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the total population, the mass of unmatched agents and the knowledge spread such that individ-
uals are indifferent between migrating or not migrating to the city, i.e., V ∗

U(δ;U(δ,N)) = v(N).
Substituting in V ∗

U(δ;U(δ,N)) and v(N) implies:

A

r

(
q0 + s0a0 − 1

2
s0a1δ

)
4μ(U(δ,N))δ

r + η + 4μ(U(δ,N))δ
= v0N. (15)

The EE locus turns out to be hump-shaped, as shown in Fig. 4. A steady-state equilibrium with
endogenous migration occurs for values of the knowledge spread and population mass where the
equilibrium entry and knowledge spread loci intersect.

In order to generate a city that is non-degenerate (i.e., with positive mass of population) in
equilibrium, the benefits of entry must exceed the cost when no one lives there. This is guaranteed
by,

Assumption 2 (Non-degenerate City). 2α
r+η

A
r

(q0+s0a0)
2

s0a1
> v0.

Theorem 2 (Existence of Steady-State Equilibrium under Endogenous Migration). Suppose that
Assumptions 1 and 2 hold and s0 and a1 are strictly positive. Then a non-degenerate steady-state
equilibrium with endogenous migration (SSEEM) exists and is unique.

We continue by outlining some interesting connections between knowledge exchange and
endogenous agglomeration (additional comparative statics are available from the authors upon
request).

Proposition 2 (Interactions between the Pattern of Knowledge Exchange and the Extent of Ag-
glomeration). Suppose that Assumptions 1 and 2 hold and s0 and a1 are strictly positive. In an
SSEEM,

(i) an increase in the degree of matching efficacy (higher α), a decrease in the rate of matching
detachment (lower η) or a reduction in the cost of entry (lower v0) lowers the equilibrium
knowledge spread (δ̂), but raises the equilibrium per capita flow of matches (βU(δ̂, N̂)/N̂)

and the equilibrium population mass (N̂);
(ii) better technology (higher A) or narrower knowledge (higher a1) yields a smaller equilibrium

knowledge spread, a greater equilibrium per capita flow of matches (βU(δ̂, N̂)/N̂) and a
higher equilibrium population mass.

Proposition 2 is an extension of Proposition 1 to the case of endogenous migration. A higher
degree of matching efficacy implies that agents can concentrate on finding more effective oppor-
tunities for knowledge exchange and hence choose a smaller knowledge spread—this is reflected
by the shift of the KS locus to the left (see Fig. 4). In addition, a higher arrival intensity raises
the gains from migrating because there is less delay between matches. This results in a higher
steady-state equilibrium population mass which further encourages agents to favor more effective
collaborative efforts. In response to the higher value of α, the EE locus will also shift up, thereby

consumption in equilibrium, though the surplus generated in a city remains capitalized in rents. We have not given this
extension here due to the increased algebraic complexity of calculations. Mathematically, it is isomorphic to using a
linear entry cost function, v(N) = v1 + v0N , where v1 is the reservation utility level.
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reinforcing the effects of the backward shift of the KS locus. The effects of a lower matching
detachment rate are qualitatively the same.

In contrast with the closed-city model in Section 3, we find that more technologically ad-
vanced cities (cities with higher A) will have more selective patterns of information sharing.
This occurs because the higher level of technology has the direct effect of inducing more popula-
tion agglomeration. Because of the beneficial aspects of population density for matching, agents
in turn become more selective. Similar results emerge in regard to the effect of different para-
meter values concerning the effectiveness of knowledge exchange. For example, if knowledge
is narrower (higher a1) or the cost of entry becomes cheaper (lower v0), agents will choose less
diversified patterns of interaction.

While the finding of a positive effect of technology on population agglomeration corrobo-
rates that in conventional urban models with a Lucas–Romer production externality, our paper
generates a number of new insights. First, we provide theoretical predictions on the pattern of
knowledge exchange, which cannot be found by previous studies in which knowledge spillovers
are mechanically presumed. Second, we are able to characterize how an array of matching and
knowledge exchange parameters affect population agglomeration and knowledge flows. In par-
ticular, we show that in response to changes in matching, technology and knowledge exchange
parameters, the equilibrium population mass and the equilibrium knowledge spread always
change in opposite directions. Finally, our results suggest that in response to changes in match-
ing, technology and knowledge exchange parameters, the equilibrium population mass and the
equilibrium per capita flow of matches always change in the same direction. Recent work by
Carlino et al. [6] establishes empirical support for the predictions of our model—they find that
the number of patents per capita (measuring the local per capita flow of matches) is positively
correlated with the employment density of metropolitan areas.

4.2. Socially optimal knowledge spread and population mass

In Section 4.1, we analyzed the various two-way interactions between the endogenous knowl-
edge transmission mechanism and the process of population agglomeration. In this section, we
demonstrate that these interactions lead to new sources of inefficiency associated with population
migration.

In a decentralized equilibrium, individuals choose their knowledge spread to maximize their
unmatched value function given the population size, and continue to migrate until the net utility
from migrating is equal to zero. In a social planner’s problem, we assume that the city planner
(or the immigration officer) seeks to maximize the net welfare of a representative city resident
(i.e., social welfare maximization in the spirit of J.S. Mill) over (i) the knowledge spread and
(ii) the population mass (or mass of unmatched agents) to be established when all residents
simultaneously move to the city.18 Since both δ and U may vary over time, a true social optimum
would involve solving the entire path of {δ,U,N}. For simplicity as well as for comparison with
the steady-state equilibrium analysis, we instead restrict our attention to a “steady-state” social
welfare maximization with time-invariant values of {δ,U,N}. Conceptually, this means that at

18 Notably, we consider the case where a city planner chooses to maximize the net welfare of only the individuals
residing in the city; the city does not yet exist when the planner solves the optimization problem. One may also consider
the case in which the city does exist and the social planner maximizes the welfare of current residents and potential
immigrants. This entails consideration of redistribution issues which detract from our principal interest—the interactions
between the social inefficiencies from knowledge exchange and congestion externalities.
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time 0, all agents that will enter the city are unmatched, but at any time greater than zero in this
continuous time model, steady state is presumed to occur. Since all agents enter as unmatched, the
unmatched value measures the expected present discounted value of the utility flows of matches
facing each representative agent, which is the social objective function of J.S. Mill.19 Formally,
define:

Definition 3 (Social Optimum). A symmetric social optimum (SO) is a triple {δ∗,U∗,N∗} satis-
fying:

(S-1) optimal knowledge spread and population size: {δ∗,N∗} ∈ argmaxδ,N [V ∗
U(δ;U(δ,N)) −

v(N)];
(S-2) steady-state population: (12).

Theorem 3 (Existence of a Social Optimum). Suppose that Assumption 1 holds and that s0 and
a1 are strictly positive. Then a social optimum exists and is unique.

Thus, the social planner chooses δ and N simultaneously to maximize the net welfare of a
representative resident. Because the arrival rate depends on the mass of unmatched agents, it is
convenient to transform the problem such that the social planner chooses δ and U to maximize
the net utility of a potential representative resident. Then, by applying the steady-state population
condition, (12), we can solve for N .20 As we demonstrate below, the situation where μ is a
function of U implies that a matching externality occurs in equilibrium. This, in turn, distorts the
economy’s extent of population agglomeration.

We can compare the decentralized equilibrium with the social optimum to conclude:

Proposition 3 (Social Inefficiency). Suppose that Assumptions 1 and 2 hold and that s0 and a1
are strictly positive. It is possible that a decentralized equilibrium SSEEM is underpopulated or
overpopulated relative to the social optimum (SO); it is also possible that an SSEEM is underse-
lective or overselective in knowledge exchange compared to the SO.

We shall illustrate this result graphically after some discussion. We first present the equilib-
rium conditions for the endogenous knowledge spread and population mass:

β(δ;U) = 4αδU = 2(r + η)

(
q0 + s0a0

s0a1δ
− 1

)
≡ B(δ), (16)

v0
(
η + B(δ)

)(
r + η + B(δ)

) = η

(
A

r

)
(4αδ)

(
q0 + s0a0 − 1

2
s0a1δ

)
. (17)

In contrast, the planner’s choices of the knowledge spread and population mass are governed by:

(r + η)(q0 + s0a0 − s0a1δ) − 2αUs0a1δ
2 = δ(4αU)

(
q0 + s0a0 − 1

2
s0a1δ

)
r + η

η + 8αUδ
, (18)

v0(η + 8αUδ)(r + η + 4αUδ)2 = η(r + η)

(
A

r

)
(4αδ)

(
q0 + s0a0 − 1

2
s0a1δ

)
, (19)

19 The reader is referred to Laing, Palivos and Wang [21] for further discussion.
20 Mathematically, this is isomorphic to solving for δ and N first, which provides a solution for U in a recursive manner,
though the transformed problem is more tractable.
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where the LHS is the marginal social benefit whereas the RHS is the marginal social cost.
Straightforward comparison suggests that the equilibrium and social optimum solutions are gen-
erally different.

In our model, social inefficiency arises for two reasons. First, the city may feature an equi-
librium population mass larger than the social optimum because individuals do not consider the
impact of their migration decision on the city utility level. By not taking into account their effect
on the overall population mass, the city may be overpopulated relative to the social optimum.
This result occurs in much of the conventional urban economics literature—we show, however,
this congestion externality effect leads to an additional distortion in the pattern of information
flows in an economy. In particular, we demonstrate that the congestion externality may cause
individuals to undersearch for potential collaborators by becoming overselective in knowledge
exchange.21

Second, there is another possible inefficiency when the gains from a higher population density
are sufficiently large. The selection of the knowledge spread induces a matching externality in
the economy. This occurs because agents fail to account for the fact that accepting matches with
more types of individuals lowers the mass of unmatched agents in the economy, rendering it more
difficult for everyone to meet other unmatched agents. This matching externality effect potentially
results in a decentralized equilibrium that is under-selective in its patterns of knowledge exchange
and underpopulated relative to the social optimum.22

Specifically, the first-order condition for the social planner’s choice of the knowledge spread
is:

∂V ∗
U(δ;U)

∂δ
+ ∂V ∗

U(δ;U)

∂U

∂U(δ,N)

∂δ
= 0. (20)

Note that the first term in (20) corresponds to the choice of the individual’s knowledge spread in a
decentralized equilibrium. Individuals, taking the mass of unmatched agents as given, choose the
knowledge spread to maximize their expected lifetime utility. The social planner, however, takes
into account that a larger knowledge spread lowers the mass of unmatched agents in the economy
(which we refer to as the matching externality effect). This is the second term in Eq. (20).

As stated in Proposition 3, it is possible that compared to the social optimum, a decentralized
equilibrium is underpopulated or overpopulated and underselective or overselective in knowledge
exchange. To illustrate, we discuss the two most interesting cases: (i) a decentralized equilibrium
is overpopulated and overselective relative to the optimum (Fig. 5); (ii) a decentralized equilib-
rium is underpopulated and underselective relative to the optimum (Fig. 6). To introduce these
arguments graphically, we need to introduce some additional notation. Denote V ∗

U(δ̂;U(δ̂,N))

as an unmatched agent’s expected lifetime utility given the private choice of the knowledge
spread δ̂ and V ∗

U(δ∗;U(δ∗,N)) as an unmatched agent’s expected lifetime utility under the plan-
ner’s choice of the knowledge spread, δ∗.

Next, we refer to Fig. 5 where the horizontal axis gives the population mass, N , and the ver-
tical axis gives the entry cost (v), and expected lifetime utilities for unmatched agents under the

21 See Chapter 6 of Fujita [10] for details of the conventional model that results in cities that are overpopulated in
equilibrium relative to the social optimum due to a congestion externality. There are some models that generate cities
that are underpopulated in equilibrium relative to the optimum. In the presence of either a fixed setup cost (Abdel-
Rahman [1]) or a free-rider effect (Palivos and Wang [24]), the equilibrium city size may be too small. Within our
general equilibrium search-theoretic framework, channels for either overpopulation or underpopulation are present.
22 It should be noted that when the function representing the aggregate number of meetings (m) exhibits constant returns
(i.e., γ = 1 and thus μ is a constant), the matching externality effect is absent.
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Fig. 5. Comparison between social optimum and equilibrium with strong congestion externality.

private and planner’s choice of the knowledge spread (V ∗
U(δ̂;U(δ̂,N)) and V ∗

U(δ∗;U(δ∗,N))).
Consider the case where the matching externality is minimal so that the planner’s choice of the
knowledge spread is not too much smaller than in equilibrium. Since the matching externality
in this case is not too strong, an agent’s unmatched value function (V ∗

U(δ̂;U(δ̂,N))) will not
lie much below the lifetime utility that would occur (for each value of N ) under the planner’s
choice of the knowledge spread (V ∗

U(δ∗;U(δ∗,N))). Recall that under endogenous migration,
the steady-state equilibrium population level is pinned down where the unmatched value func-
tion intersects with the entry cost function, N̂ . For the social optimum, however, the population
level is found where the slope of the unmatched value function with respect to N has the same
slope as the entry cost function, N∗. In this case, we obtain the standard overpopulation result in
decentralized equilibrium, as in the urban economic literature. Moreover, individuals are overse-
lective in knowledge exchange and this undersearching behavior is consistent with that obtained
in the endogenous growth literature.

Now refer to Fig. 6. In contrast with the analysis above, when the matching externality effect
is strong, the equilibrium value of the knowledge spread is large relative to the optimum. As a
consequence, V ∗

U(δ∗;U(δ∗,N)) may lie far above V ∗
U(δ̂;U(δ̂,N)) and the optimal population

N∗ exceeds the equilibrium population N̂ . Interestingly, in a decentralized equilibrium, cities
are underpopulated and individuals are oversearching to yield an underselective knowledge ex-
change pattern.23 This finding contrasts with conventional results in both the urban and growth
literatures.

23 It is evident that a mixed force of matching and congestion externalities may lead to underpopulation with overselec-
tivity or overpopulation with underselectivity in a decentralized equilibrium.
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Fig. 6. Comparison between social optimum and equilibrium with strong matching externality.

5. Concluding remarks

This paper develops a search-theoretic model to examine the patterns of knowledge exchange
and their interaction with agglomerative activity. It illustrates that heterogeneity in agents’ knowl-
edge types plays a crucial role in the transmission of ideas. This occurs because agents in our
model face a trade-off between selective, highly beneficial knowledge exchange and a higher
number of matches.

We believe there are a number of interesting issues which may be pursued in this research. The
first objective is to explore the interactions between knowledge exchange and agglomerative ac-
tivity in environments where individuals have different levels of human capital. This would allow
for a rich array of possible interactions among agents due to ‘horizontal’ and ‘vertical’ aspects of
knowledge, and their consequences for agglomeration. Second, one may seek to investigate the
relationships between knowledge exchange and agglomerative activity when individuals make
human capital investments prior to engaging in the exchange of information. In this manner, the
benefits of agglomeration due to lower costs of communication in dense environments will affect
initial human capital decisions.

An important objective of our research is examining the implications of horizontal differences
in knowledge for patterns of information exchange and agglomerative activity. In particular, our
model demonstrates that larger cities should have more selective patterns of information flows
due to lower costs of communication in dense economic environments. With these insights, we
believe it would be interesting to further examine the evidence on knowledge spillovers using
patent data as in Jaffe et al. [18]. An attempt at such an endeavor has been made recently by
Carlino et al. [6]. Interestingly, they find that the number of patents per capita is positively corre-
lated with the employment density of metropolitan areas, thus lending empirical support to our
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theoretical predictions (see our Proposition 2). Further quantitative studies may be conducted to
study knowledge exchange and knowledge production across cities of different size.
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Appendix A. Extension—knowledge exchange is most effective when agents are alike

Throughout the paper, we have explored an agent’s pattern of interaction with others while
acknowledging knowledge exchange depends on differences among agents in terms of types of
ideas. In that version of our knowledge distance structure (δ > 0), we assume that the exchange
of knowledge is not very effective when agents possess very similar types of knowledge or when
agents have little in common.

We now consider an alternative view by assuming knowledge exchange is most effective when
agents are alike (δ = 0). Thus, this is a special case of the set of parameters where Assumption 1
does not hold. Recalling (10), for the case where δ = 0, the value function is:

V ∗
U(δ;U) =

[
2μ(U)δ

r + η + 2μ(U)δ

](
A

r

)(
q0 + s0a0 − 1

2
s0a1δ

)
.

Although the hypothesis concerning knowledge exchange is different than the one we pursue
in Section 3, the underlying determinants of the knowledge spread in the economy remain the
same. As before, agents choose their selection strategy recognizing trade-offs between higher
probabilities of matches (a contact rate effect) and more effective matches (a knowledge efficacy
effect). Because the underlying costs and benefits of matching are the same as in Section 3, the
properties of the steady-state equilibrium are also similar.

There is an intermediate case where δ satisfies neither Assumption 1 nor δ = 0. This case
does not admit a closed-form solution for the relationship between the individual’s knowledge
spread and the population mass. However, our analysis seems to suggest that a higher value of δ

is associated with a smaller knowledge spread.

Appendix B. Proofs

This appendix is devoted to deriving the equilibrium knowledge spread locus (KS), as well as
proving Lemma 1, Theorems and Propositions.
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B.1. Proof of Lemma 1

We can substitute (7) into (8) under symmetry (δk = δk′ ) and f0 → 0, transform the unmatched
value in terms of the match-specific knowledge spread δk , and then find V U over the region where
δk < δ by integrating from zero to δk :

V U(k,U ; {δ}k′∈κ) =
(

4μ(U)δ

r + η + 4μ(U)δ

)
A

r

(
q0 + s0a0 − 1

2
s0a1δ

)
, for δ < δ. (B.1)

Repeating the same exercise by integrating over the region where δ � δ yields (10).

B.2. Derivation of the equilibrium knowledge spread, and proof of Theorem 1

We begin by checking that in equilibrium, if f0 > 0, the strategy δ̂ = δ̃ is the unique dominant
strategy (for all players). Then we select this equilibrium in the case f0 = 0 by taking the (rather
trivial) limit as f0 → 0 (as all elements of the sequence are δ̂). To see this, recall the matching
rule f (k, k′, δk, δk′) with f0 ∈ (0,1): when agent k wants a match and the other doesn’t, the
probability of a match is strictly positive but less than one. Recall that δ̃ is the global optimum of
the unmatched agent k’s optimization problem if agent k is allowed to choose his matches uni-
laterally. Thus, if agent k expands the utility-maximizing δk , his payoff decreases as he increases
the probability for a match to occur with less desirable agents; if he contracts δk , his utility by
construction of V U can only go down. This implies that δ̂ = δ̃ is the unique dominant strategy
when f0 > 0, so all agents playing δ̂ = δ̃ is the unique pure strategy Nash equilibrium.

Next, we exploit what we have just proved: that δ̂ can be derived from the optimiza-
tion problem of an unmatched agent who can choose matches unilaterally. Differentiating
V U(k,U ; {δ}k′∈κ) = V ∗

U(δ;U) with respect to δ provides the first-order condition for obtain-
ing the equilibrium knowledge spread. Denote Δmax ≡ 2(q0 + s0a0)/(s0a1); for any value of
δ > Δmax, V ∗

U(δ;U) < 0. Thus, under Assumption 1, the kink in the value function occurs over
a region where an agent’s unmatched value is negative and is not important for determining the
individual’s knowledge spread. Simple algebra yields the following quadratic equation that can
be used to derive δ̂:

δ2 + r + η

2αU
δ − r + η

2α

q0 + s0a0

s0a1U
= 0. (B.2)

This can be used to solve for the mass of unmatched agents, which can then be substituted into
the steady-state population condition (12) to obtain the KS locus (14). Setting N = NKS , we
obtain Theorem 1.

B.3. Proof of Proposition 1

From (13), N is decreasing in δ. The first part of the proposition thus follows directly from
Theorem 1. For the second part, note that we can divide both sides of (B.2) by δ2 to obtain:

Uδ = r + η

2α

(
q0 + s0a0

s0a1δ
− 1

)
which is decreasing in δ. This together with the result that β(δ;U) = 4αUδ implies that a higher
N is associated with a higher Uδ and hence a higher β . Utilizing (11) and (12), we can rewrite
the per capita match rate as: βU/N = η(1 − U/N) = ηβ/(η + β), which is increasing in β and
thus positively related to N as well.



M. Berliant et al. / Journal of Urban Economics 60 (2006) 69–95 93
B.4. Proof of Theorem 2

Define δmax ≡ (q0 + s0a0)/(s0a1) = Δmax/2. We claim there exists a unique value of (δ,U)

satisfying both the knowledge spread (KS) and the equilibrium entry (EE) relationships and such
that δ ∈ (0, δmax). Using (B.2),

β(δ;U) = 4αδU = 2(r + η)

(
δmax

δ
− 1

)
≡ B(δ) (B.3)

which is strictly decreasing in δ for δ ∈ (0, δmax) with limδ↘0 B(δ) = ∞ and B(δmax) = 0. Sub-
stituting (B.3) into (15) and using (11) and (12), the equilibrium entry condition becomes:

v0
(
η + B(δ)

)(
r + η + B(δ)

) = η

(
A

r

)
(4αδ)

(
q0 + s0a0 − 1

2
s0a1δ

)
which can be further simplified by applying the definition of δmax and B(δ) and canceling out
the common term, r + η + B(δ),

v0
(
η + B(δ)

) = η

r + η

A

r
2αs0a1δ

2. (B.4)

This can be rewritten as:

Λ(δ) ≡ v0
(
η + B(δ)

) − η

r + η

A

r
2αs0a1δ

2 = 0. (B.5)

We prove the existence of the steady-state equilibrium knowledge spread using the following
intermediate value argument. Note that Λ(δ) is continuous and strictly decreasing in δ over the
range of (0, δmax). Moreover, it is clear that limδ↘0 Λ(0) = ∞ and that

Λ(δmax) = v0η − η

r + η

A

r
(2αs0a1)(δmax)

2 < 0

under Assumption 2. Since individuals will never choose a knowledge spread which yields zero
utility, δ must be chosen below the upper bound δmax. Therefore, there is a value of δ ∈ (0, δmax)

such that Λ(δ) = 0, which demonstrates that a steady-state equilibrium under endogenous mi-
gration exists (as we can show that the second-order condition holds). Since Λ(δ) is a monotone
decreasing function of δ over the range of (0, δmax), there can only be one value of δ solving the
steady-state equilibrium under endogenous migration.

B.5. Proof of Proposition 2

Under the conditions imposed in Theorem 2, the equilibrium is determined at the intersection
of the KS and EE loci where both are downward sloping in (δ,N) space, as shown in Fig. 4. It is
obvious that any (local) shift in the KS locus changes equilibrium values of δ and N in opposite
directions along the downward-sloping portion of the EE locus. Similarly, any (local) shift in
the EE locus changes equilibrium values of δ and N in opposite directions along the KS locus.
Concerning the second part of the proposition, since (11), (12) and (B.2) continue to hold when
N is endogenous, the proof of Proposition 1 still applies.

B.6. Proof of comparative statics

The comparative statics under endogenous migration can be easily obtained by differentiat-
ing (B.5). From (B.3), dB/da1 < 0 and dB/dq0 > 0. Thus, we have: dΛ/da1 = v0(dB/da1) −
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ηA2αs0δ
2/[r(r + η)] < 0 and dΛ/dq0 = v0(dB/dq0) > 0; moreover, dΛ/dv0 = η + B > 0.

Since dΛ/dδ < 0, by the implicit function theorem, one obtains: dδ̂/da1 < 0, dδ̂/dq0 > 0 and
dδ̂/dv0 > 0.

B.7. Proof of Theorem 3

Using the relationship β(δ;U) = 4αUδ and (12), the first-order conditions for the knowledge
spread and population mass facing the social planner are:

(r + η)(q0 + s0a0 − s0a1δ) − 2αUs0a1δ
2 = δ(4αU)

(
q0 + s0a0 − 1

2
s0a1δ

)
r + η

η + 8αUδ
, (B.6)

v0(η + 8αUδ)(r + η + 4αUδ)2 = η(r + η)

(
A

r

)
(4αδ)

(
q0 + s0a0 − 1

2
s0a1δ

)
, (B.7)

where the LHS is the marginal social benefit whereas the RHS is the marginal social cost of δ

and N , respectively. Manipulation of (B.6) implies:

β2 + 1

2

{
(r + η)

[
3 − 2

(
δmax

δ

)]
+ η

}
β − η(r + η)

(
δmax

δ
− 1

)
= 0, (B.8)

which yields a unique positive root β = F(δ). Define δu = [4(r + η)/(5r + 8η)] δmax < δmax.
Then F is a strictly decreasing function of δ over the range of (0, δu). Substituting this into (B.7)
gives a fixed point map in δ. Following arguments similar to the proof of Theorem 2, we can
show the existence of a unique fixed point δ as long as η and r are both strictly positive. This
implies that a social optimum exists when v(N) = v0N (as we can show that the second-order
condition holds).

B.8. Proof of Proposition 3

Rather than deriving conditions on the parameter space for the various cases of Proposition 3,
it is sufficient to verify the proposition by construction. Let v(N) = v1 + v0N , under which three
out of four possible cases can be established:

Case 1 (Underselectivity and Overpopulation). Consider: q0 = 1, s0 = 1, a0 = 0.5, a1 = 5,
A = 1, r = 0.2, η = 0.2, α = 0.2, v0 = 0.2, v1 = 0. In this case, the steady-state equilibrium (with
endogenous migration) allocation is (δ̂, N̂) = (0.175,15.6) and the socially optimal allocation
is (δ∗,N∗) = (0.171,4.08). So the equilibrium allocation is underselective and the economy is
now overpopulated in equilibrium compared to the social optimum.

Case 2 (Overselectivity and Overpopulation). Maintain all values of the parameters except
α = 0.5. In this case, the steady-state equilibrium (with endogenous migration) allocation is
(δ̂, N̂) = (0.136,20.5) whereas the socially optimal allocation is (δ∗,N∗) = (0.139,4.33). Thus,
the equilibrium allocation is overselective and the economy is now overpopulated in equilibrium
compared to social optimum. Further, higher values of α lead to further deviations between the
equilibrium and the socially optimal allocation.

Case 3 (Underselectivity and Underpopulation). Consider: q0 = 1, s0 = 1.5, a0 = 0.5,
a1 = 9.5, A = 1, r = 0.2, η = 0.22, α = 0.31, v0 = 0.2145, v1 = 0.7. In this case, the steady-state
equilibrium (with endogenous migration) allocation is (δ̂, N̂) = (0.113,0.690) and the socially
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optimal allocation is (δ∗,N∗) = (0.101,0.718). Now, the equilibrium allocation is underselec-
tive and the economy is underpopulated in equilibrium compared to the social optimum.

One may establish the remaining case with a more complex polynomial function of v(N) and
a general arrival intensity function μ(U) = α0 + αU .
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