Recently superdeformed rotational bands have been discovered in 36Ar[1], and 40Ca[2]. The emergence of superdeformation in this mass region provides us with an opportunity to study the interplay between macroscopic and microscopic effects in light nuclear matter. The N≠Z nucleus 38Ar lies 2 neutrons more than 36Ar and 2 protons less than 40Ca. Highly deformed bands, firmly linked to states in 38Ar, have been observed[3]. A level scheme and B(E2)'s for the bands of interest in 38Ar will be presented. The 24Mg(20Ne,α2p)38Ar reaction was used to populate the nuclide in an experiment conducted with the GAMMASPHERE array in concert with the MICROBALL charged particle array.

* This work supported by the National Sciences and Engineering Research Council of Canada.