Secular Demand Stagnation in the 21st Century U.S. Economy
Barry Cynamon and Steven Fazzari
Preliminary draft prepared for INET conference session “A Decade of Stagnation. Why?”
October 21, 2017

The concern that weak demand could lead to a persistently stagnant economy goes back to Keynes’s General Theory and led Alvin Hansen to coin the term “secular stagnation.” Following the second World War, this perspective was not completely lost, but it became a backwater in mainstream macroeconomics. The emerging neoclassical synthesis model attributed Keynesian demand constraints to nominal rigidities that would be resolved in what was described as the “long run,” probably not lasting more than two or three years. This paper argues that it was a mistake to dismiss secular demand stagnation as a potentially important problem in modern developed economies. We argue that the theoretical case for possible secular demand stagnation remains strong. Perhaps more importantly, we provide evidence that the U.S. has experienced a specific kind of secular stagnation in the years following the global financial crisis and the Great Recession, and that there is a good chance that weak demand generation will prevent the U.S. economy from fully realizing its potential for some years to come.

We begin with an overview of a few broad facts supporting the claim that the U.S. economy has experienced stagnant growth in recent years. The headline statistics come from real GDP. We compare peak-to-peak performance of output over the past few decades, adjusted for demographic trends, to demonstrate weak growth since 2000, and exceptional stagnation since 2007. We also provide supporting evidence from labor-force participation and the evolution of official forecasts of potential output. The basic argument is that the U.S. economy remains well below the trend it followed prior to the 2008-09 crisis.

This conclusion is uncontroversial, the bigger question is why it occurred. This paper seeks to address whether recent observed stagnation is due to changing conditions of supply or demand. The theoretical case for looking first to supply to explain secular weakness is conventional. According to mainstream macroeconomics, as mentioned previously, problems of inadequate demand should be confined to the short run. Stagnation extending well beyond five years, according to this perspective, should arise from slower growth of inputs to production, a deceleration in the rate of technical change, or an unfavorable shift in the institutional structure that affects either inputs or technology. This theoretical framework leads many analysts to declare that, despite the clear evidence of disappointing macroeconomic trends since 2007, the U.S. economy must nonetheless be operating at or near its potential output level by late 2016.

We disagree with this assessment for two reasons. First, the theoretical case that demand converges to a supply-determined growth path in the long run is unconvincing.
Second, a more detailed look at the empirical evidence demonstrates that slow demand growth has been the primary problem holding back the U.S. economy since 2007.

We discuss why the usual mechanisms assumed to restore demand to supply-determined potential could be ineffective. We review the reasons that nominal adjustment, that is deflation or disinflation, may not solve the problem of insufficient demand. Indeed, we argue the idea that nominal rigidity is the source of Keynesian problems and nominal adjustment is the solution is a weak link the dominant neoclassical synthesis perspective. Furthermore, we argue that monetary policy cannot be assumed to solve the problem of stagnant demand growth over a multi-year horizon. The well-known zero-bound problem for nominal interest rates is part of this argument. We also develop concerns about low interest elasticities of spending and small wealth effects. Also, in historical circumstances when monetary policy actually does stimulate demand for a period of time, it may lead to excessive borrowing that raises financial fragility and increases the likelihood of future instability and stagnation. In fact, we argue that attempts to push demand to potential output levels with declining interest rates from the middle 1980s through the early 2000s were somewhat effective, but only because they contributed to excessive lending to the household sector that eventually was the primary cause of the 2008-09 crisis. Our conclusion is that the dynamics of aggregate demand can be a fundamental and independent determinant of the path of the economy “beyond the short run.”

What kind of model can guide our understanding of longer term demand dynamics and the possible stagnation of medium-run demand growth? This has been a question of interest in heterodox Keynesian macroeconomics for the several decades. We survey the results of these models briefly to provide an analytical framework for practical, empirical thinking about the effects of secular stagnation caused by demand dynamics in the current U.S. economy.

This analysis sets up the primary empirical contribution of this paper: to assess supply and demand factors that could explain slow U.S. economic growth in recent years. The more conventional approach reasons backward from a neoclassical synthesis perspective to assert that long-run slow growth must be a supply phenomenon (because, from this point of view, demand can only matter in the short run). The story therefore relies on a combination of demographic and technological explanations (including some kind of technology shock, retirement of the baby boomers, or skill mismatch problems in labor markets). We show that there is little support for direct supply-side explanations for secular stagnation. Perhaps most obviously, low inflation and historically low real interest rates point to stagnant demand rather than supply shocks as the primary explanation. Indeed, we find ample evidence of weak demand. The biggest effect comes from a deep drop and slow recovery of household demand following the crisis. We analyze data on the actual cash spending of the household sector generated with methods we developed in Cynamon and Fazzari (2015a) and show that the trend of real household demand is more than 10 percent below its pre-crisis trend and that the recovery of
household demand is dramatically behind the path followed in earlier cycles. We connect weakness in household demand with the unsustainable trend of household consumption leading up to the crisis using new evidence from a micro-data study of household finance, the dramatic bursting of the household debt bubble, and rising income inequality. Government spending has also stagnated significantly since 2010. Business investment is approximately normal relative to historical patterns, given the rather slow output growth of the past several years. Net exports jumped up considerably in the crisis, mitigating some of the decline in household demand. But trade improvements have not been large enough to overcome stagnant demand growth from the household and government sectors.

The empirical case for the demand-led perspective cannot be settled from a single piece of evidence. Rather the case rests on a historical analysis of multiple categories of evidence. This spectrum of evidence is gathered here and leads, in our view, to a clear conclusion that the U.S. is in the throes of secular stagnation that results from sluggish demand growth nearly 10 years following the biggest financial crisis since the first years of the Great Depression.

The Case for Stagnation in the 2017 US Economy

To put recent growth into historical context one must account consistently for both cyclical and population effects. It can be misleading to judge an economy’s performance by looking at how much it grows from a deep trough, or how little it grows over a period that includes a recession. We believe that peak-to-peak comparisons over business cycles overcome some of these timing problems. In addition, population dynamics have changed over the past 40 years so we compare growth on a per capita basis (total population aged 16 and over).

<table>
<thead>
<tr>
<th>Peak Dates</th>
<th>Total Growth</th>
<th>Annualized Growth per Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1973:4 to 1979:3</td>
<td>11.9%</td>
<td>1.8%</td>
</tr>
<tr>
<td>1979:3 to 1990:2</td>
<td>25.0%</td>
<td>2.1%</td>
</tr>
<tr>
<td>1990:2 to 2000:2</td>
<td>24.2%</td>
<td>2.2%</td>
</tr>
<tr>
<td>2000:4 to 2007:4</td>
<td>10.9%</td>
<td>1.4%</td>
</tr>
<tr>
<td>*2007:4 to 2017:2</td>
<td>5.8%</td>
<td>0.6%</td>
</tr>
</tbody>
</table>

* Peak yet to be reached for current cycle

The decline in annualized per capita growth in the most recent two cycles is striking. Of course, the current cycle has yet to reach its peak. But even strong growth for several years would keep the current recovery the weakest in more than a half century. For
example, even if real per capita growth economy accelerated dramatically to 2.5 percent per year for the next six years, the annualized growth figure for the current recovery would remain below the rather poor showing of the early 2000s.

The Federal Reserve’s industrial capacity utilization measure covers a rather small share of the economy (manufacturing, mining and utilities), but it tells a similar story.

Figure 1
Total Industry Capacity Utilization

The annual data are highly cyclical, but the long-term moving average shows a clear downward trend since the middle 1990s.

Current labor market statistics may seem to refute the idea that stagnation continues in the U.S. Most arguments that the economy, by 2017, has returned to more or less full employment refer to the admittedly low headline unemployment rate. It is also well known, however, that labor force participation has dropped significantly. The chart below provides some perspective on participation. The chart graphs the (smoothed) year-over-year change in the overall labor force participation rate as well as the annual change for adults aged 25 to 54, to eliminate the effect of the aging baby boom generation. The figure begins with 1990 to exclude the earlier period of rising female labor force participation.
Difference in the monthly participation rate over one year in percentage points. To reduce volatility, a twelve-month moving average is computed after differencing.

It is clear that growth in labor force participation in the past few quarters still has not come close to making up for the declines since 2008, including for the “prime age” group. In addition, it is also clear from this chart that the brief period of growth in 2006 and 2007 did not make up for losses in the first years of the century. When the Great Recession hit, labor force participation started from a somewhat low level, making the weakness since crisis more significant.

A particularly interesting indicator of stagnation, noted by Summers (2011) is the evolution of potential output estimates from the Congressional Budget Office (CBO). For fiscal planning purposes, the CBO is tasked with projecting potential output ten years forward. Figure 3 shows the evolution of these forecasts. The lower line shows how the projection for the second quarter of 2015 evolved over 12 years from early 2005 to the most recent estimate from October 2017. The upper line shows the evolution of CBO potential output forecast for the second quarter of 2017 from early 2007 to 2017.
Figure 3
Evolution of CBO Projections of US Potential Output for Two Recent Quarters

Figures in real 2009 dollars. The data were obtained from the St. Louis Federal Reserve ALFRED resource for vintage macroeconomic data. To account for both changes in the base year for the price deflator and changes in the definition of GDP, the values for the fourth quarter of 2004 were adjusted to match the October, 2017 projections and then forecasted growth rates from that point forward were used from each vintage of data to estimate what the forecast would have been using concepts consistent with the October, 2017 estimates.

These figures have stunning implications. The CBO current estimate of potential output in 2017 is 12.6 percent below (about $2.8 trillion in 2017 dollars) the forecast from ten years ago. But presumably the CBO was fully aware of the aging of the labor force when making its past forecasts. These results, along with other data presented in this section, show that the US has experienced exceptional stagnation over (at least) the past ten years. The key question is why.

Stagnation Through Supply and Demand Lenses: Critique of the Neoclassical Synthesis

Virtually every conventionally educated macroeconomist in the early 21st century has been taught that the explanation for the kind of aggregate stagnation demonstrated in the previous section, that is, stagnation that persists beyond a few years, must come from the supply side. The dominant interpretation of Keynesian macroeconomics is that stagnant aggregate demand is caused by some kind of nominal stickiness in wages or prices; once nominal variables adjust the supply side rules once again. In the “New
Keynesian” models of the past couple of decades, active monetary policy replaces nominal adjustment as the key mechanism that eliminates demand constraints reasonably quickly. How long could it take for wages and prices to adjust? How long could it take for a wise central bank to engineer a monetary offset to the nominal rigidity? Evidence is sketchy, but ten years after a late 2007 peak and approaching nine years since a mid-2009 trough must necessarily seem like enough time has passed to eliminate the supposedly “temporary” effects of even a severe demand “shock.”

Through the theoretical lens of this neoclassical synthesis (Keynesian short run and classical long run) the stagnation implied by the evidence presented in the previous section must be blamed on a compromised supply side. Stories percolate about labor skill mismatch, exogenous negative shocks to innovation, higher costs to match savers with borrowers in financial markets, excessively repressive regulation, oppressive current or future taxation, etc. Supply-side enthusiasts sing the well-rehearsed song from the 1980s that all we need do is resurrect Reaganesque tax and regulation policies to cure stagnation. Those in the mainstream who are more realistic and empirically grounded lament, but grudgingly accept, a low-growth economy as far as the eye can see as a new normal, at least until some exogenous event boosts supply-side growth.

The supply-side perspective is logically coherent and deserves empirical attention, which we begin later in this paper. But for the moment let us note that these explanations are all ex post reasoning. Conventional wisdom did not worry much about supply stagnation in the run up to or even in the immediate aftermath of the Great Recession crisis (the CBO potential output forecasts in figure 3 support this conclusion). When sluggishness first became evident, typical expectations were for a mild recession at worst, interpreted through the experience of the widely acclaimed Great Moderation. When the economy fell off the cliff in the fall of 2008, panic ensued. But as the “green shoots” of stabilization sprouted in mid 2009, typical forecasts were for growth not just consistent with earlier trends, but substantially faster than trend growth that would recover the temporarily lost output of the deep recession. Creative analysis proposed supply-side explanations for stagnation only after it became too empirically salient and too persistent to be dismissed as “short run.” The question “Why didn’t you see this coming?” is not an entirely fair criticism; much of the progress in science comes from explaining unanticipated phenomena after the fact. The main point here, however, is that the conventional theoretical lens requires a supply-side explanation for secular stagnation. It is fundamentally inconsistent with the dominant theoretical paradigm for the problem to

1 For a representative example, see “Finding America’s Lost 3% Growth” by Phil Gramm and Michael Šolon, Wall Street Journal, September 11, 2017, page A17.
2 Ben Bernanke was not alone in making this kind of statement “Our estimates are that we are slightly growing at the moment [April, 2008], but we think that there’s a chance that for the first half [of 2008] as a whole there might be a slight contraction. … Monetary and fiscal policies are in train that should support a return to growth in the second half of [2008] and [2009]” from testimony to the Joint Economic Committee of the U.S. Congress, April 10, 2008.
be explained by sluggish demand this far out from the negative “shock” that hit ten or more years ago.

We do not accept this assessment because we interpret secular stagnation through an alternative theoretical lens. Although the neoclassical synthesis conquered conventional macroeconomic wisdom decades ago, the case for the sticky price interpretation of Keynes has always been a weak link in traditional macro, both theoretically and empirically. It is particularly ironic to label the macroeconomics of nominal stickiness “Keynesian” considering that Keynes himself was highly skeptical that quick adjustment of wages and prices would be stabilizing (chapter 19 of the General Theory). While he recognized that lower prices relative to money supply could lower interest rates and stimulate investment, he thought this effect would be more than offset by destabilizing dynamics arising from expectations and an increased burden of debt. Minsky (1975) argued strongly that deflation would magnify financial instability and exacerbate a macroeconomic crisis, an assertion certainly supported by the brutal effects of deflation in the early 1930s. These perspectives were largely ignored in the mainstream, although isolated voices in mainstream journals continued to question whether nominal flexibility stabilizes the economy,\(^3\) while the relatively small but tenacious Post Keynesian group of macroeconomists never accepted the neoclassical synthesis. Furthermore, despite the central claim in decades of macroeconomic textbooks that Keynesian demand problems arise from nominal rigidity, no research provided empirical support for the claim that nominal flexibility restored the economy to potential output.\(^4\) Furthermore, mainstream monetary policy for decades seems to have considered avoiding deflation as a central mandate, a position that appears entirely inconsistent with the view that the demand-side problems arise from downwardly rigid nominal variables.

Despite the fact that nominal rigidity remains the primary textbook interpretation of Keynesian macroeconomics, with its implication that the effects of insufficient demand will be temporary, many macroeconomists, especially those with policy responsibilities in central banks, have largely abandoned the idea that nominal flexibility, as a practical matter, restores demand to potential output levels. Instead, “New Keynesian” models propose that well-informed monetary rules do the job. When demand falls short of optimal levels, the authorities cut interest rates. The effectiveness of monetary policy in this role relies on two basic assumption. First, lower rates must raise demand to a level consistent with potential output. Second, the authorities must be able to reduce rates. Another way to state the first assumption is that a practical “natural rate” of interest exists. And the second assumption is that the central bank can set a benchmark rate of interest to a level consistent with that natural rate.

\(^3\) Examples include Tobin (1975), DeLong and Summers (1986), and Caskey and Fazzari (1987). These papers also generalized the argument to show not just that deflation could be destabilizing, but also disinflation may be destabilizing if inflation rates fell relative to previous expectations.

\(^4\) Caskey and Fazzari (1993) compare the dynamics effects of stabilizing and destabilizing channels for nominal flexibility in an empirically calibrated model. They find that the destabilizing channels dominate.
The problem with the second assumption is now well known. In the aftermath of the Great Recession, monetary authorities in most developed economies pushed nominal short-term rates down to the zero lower bound (ZLB), yet stagnation persisted.\(^5\) Prior to 2008, the ZLB was considered largely a curiosity of little practical relevance (at least outside of Japan). Once the severity of the crisis became widely recognized, the ZLB was widely viewed as the critical problem that explained the stagnant recovery (see, among many others, DeLong and Summers, 2012). Yet, this situation was considered highly unusual and mainstream thinking was that we would get back, eventually, to “normal” times in which monetary policy renders concerns about secular stagnation moot. From the perspective of conventional wisdom, the actions of the Federal Reserve to raise interest rates modestly by late 2016 and into 2017 would suggest that demand stagnation induced by the ZLB has ended.

We question this perspective on several grounds. First, personal consumption is nearly 70 percent of aggregate demand in the US and there is little evidence that it is sensitive to interest rates.\(^6\) Second, while business investment is usually viewed as more interest elastic than consumption, evidence in favor of an elasticity of substitution between labor and capital of unity (as implied by the typical Cobb-Douglas technology assumption of calibrated models) has been seriously questioned empirically.\(^7\) Furthermore, the link between business investment and interest rates faces what Fazzari (1999) calls the problem of “multiplied elasticities.” The effect of lower interest rates on aggregate demand through business investment is limited by the elasticity of the user cost of capital to the real interest rate (likely averaging less than 0.25 due to depreciation dominating the user cost), the elasticity of substitution between capital and labor (averaging about 0.5 across many studies), and the share of business investment in aggregate demand (recently about 13 percent).

If neither saving nor investment is very sensitive to interest rates, a typical loanable funds theory of the natural rate of interest implies that the natural rate will be so volatile that it is of little practical relevance for monetary policy. (Think of a loanable funds diagram with very steep supply and demand curves. Small shifts in either curve will generate big changes in the equilibrium interest rate.) In particular, weak investment and low consumption (higher desired saving at full employment income levels) will cause the natural rate to plummet to very negative values. Tracking a volatile and often very negative natural rate is not a feasible operational goal for monetary policy.

This view seems inconsistent with the perception that monetary policy was effective at stabilizing the economy during the “Great Moderation” period from roughly

\(^5\) Some countries experimented with modestly negative nominal interest rates. Short-term interest rates did become slightly negative in a few countries, but it is unlikely that this policy can lower nominal rates much below zero. See Viñals, et al. (2016) for further discussion.

\(^6\) The consumption Euler equation that typically provides the foundation for the “IS” relationship in New Keynesian DSGE models imposes intertemporal interest elasticity of consumption.

\(^7\) See Chirinko, et al. (2011) and references given there.
the middle 1980s to the eve of the Great Recession. We agree that interest rate cuts by the Federal Reserve did help prevent the emergence of secular stagnation prior to 2008, but we argue that this short-term stabilization did not operate through conventional intertemporal substitution channels for either consumption or business investment. Rather, falling interest rates stimulated the economy primarily though the housing market. Figure 4 shows the share of residential construction in GDP since 1972. The recession bars show that every recovery from the 1974-75 recession through the 2001 recession was led by a housing boom that began almost exactly at the trough of the recession. (In the 2001 recession, there was hardly a pause in the pre-recession trend of residential construction, but the trend accelerated after the trough.) We attribute these booms in large part to interest rate cuts engineered by monetary policy.

Figure 4
Share of Residential Construction in GDP

In addition, parts of personal consumption were financed by “mortgage equity withdrawal,” including draw downs on home equity lines of credit and cash-out refinancing. Through these channels, monetary policy was likely effective at stimulating demand for an extended period of time but with the consequence of persistent increases in household financial fragility, fragility that would ultimately trigger the Great Recession crisis. In this respect, the difference between the aftermath of the 2008-09

8 This kind of dynamic process is an example of the general phenomenon described by Minsky’s (1986) “financial instability hypothesis.”
recession and earlier cycles evident in figure 4 is important. Although the decline in residential construction was catastrophic, the recovery was neither swift nor particularly strong. It took about three years from the trough of the crisis for any recovery at all to begin. And even by mid 2017, this measure of residential construction is just beginning to reach what would have been trough-of-recession levels for earlier cycles in the past four decades.

The point is that to the extent that monetary policy stabilized demand since the 1980s or even earlier, it did so by encouraging what ultimately became unsustainable borrowing that eventually led to severe financial instability and, as we argue later, ultimately secular stagnation.

Models of Demand-Led Growth

If neither nominal adjustment nor well-informed monetary policy are effective in assuring that demand returns to supply-determined potential output, the door opens to the possibility that demand growth may persistently fall short of the level necessary fully utilize economic resources, that is, inadequate demand growth can lead to secular stagnation. This is the perspective taken by a family of heterodox demand-led growth models that we survey briefly here to provide a foundation for the empirical observations that follow.

** To be completed. Several brief notes follow **

- Historical model: demand growth arises from historically specific dynamics understood by analyzing the circumstances of particular periods of time
- Kaleckian growth model: investment is, at least in part, autonomous and is the primary engine of demand dynamics (consistent with Keynes’s view in the *General Theory.*). Income distribution, especially between profits and wages also plays a central role in the determination of the path of aggregate demand. Different paths of demand ultimately result in changes in capacity utilization.
- Supermultiplier models: In contrast to Kaleckian models, investment is determined by firms that target a desired capital-output ratio, including the choice of utilization rate. The dynamics of demand are, at a basic level, determined by two factors. First, the path of autonomous demand. This is demand that does not depend on the state of the economy, including, but not limited to, cyclically independent government spending. Second, a “supermultiplier” term that can incorporate the long-run propensity to consume (possibly including effects of income distribution), endogenous import demand, and the way the dynamics of endogenous investment relate to the size of the economy.
 - Empirical support: see Girardi and Pariboni (2016)
- In all of these models, technical progress, labor force growth and labor productivity growth may endogenously adjust to strong or weak demand
dynamics. Thus, these models turn the neoclassical synthesis around: instead of demand conforming to supply, demand leads supply.

- This is a key result delivered by the supermultiplier model presented in Fazzari, Ferri, and Variato (2017). Changes in autonomous demand growth can, within limits, induce changes in steady-state supply growth.

Why Recent Secular Stagnation: Is it Supply or Demand?

In contrast to the mainstream view that long-term macro stagnation must be explained from the supply side, the previous section makes the case that secular stagnation could indeed be the result of persistently weak demand growth. This theoretical conclusion sets up an important empirical question. Given that the US economy has experienced significant and persistent stagnation in recent years, to what extent is it explained by supply versus demand? This is a big question that deserves research from a number of perspectives, we provide a start towards an answer in this section.

Let us first consider direct evidence for the supply-side explanation. An often-mentioned supply-side story for a deceleration in real output growth is the aging of the large baby-boom generation that reduces labor supply growth. No doubt demographic factors are important, but this explanation must confront at least two empirical problems. First, mainstream predictions of the economy’s path that were fully informed by demographic reality have been dialed back significantly (see figure 3). Second, why should this demographic effect occur so abruptly around the time of the Great Recession crisis?

A more plausible supply-side story is an unanticipated slowdown in labor productivity growth. Although the data are volatile, there has been a marked decline in the growth rate of real private output per hour in recent years, especially since 2015. As the previous section points out, however, slower growth in labor productivity could be the result of a stagnant economy rather than the root cause of stagnation. It is clear from figure 5 that private R&D spending has actually been one of the few bright spots in recent economic performance.
In fact, the real weakness in R&D occurred in the aftermath of the bursting of the tech bubble rather than following the Great Recession. There is no evidence of weak innovative activity in the past decade from this widely referenced measure.

Another common supply-side explanation for stagnation is a mismatch between the skills of the labor force and the changing needs of modern business. The correlation between unemployment and job openings (the “Beveridge Curve”) does not support this explanation. If mismatch is the problem job openings should go up as the unemployment rate rises, that is, openings and unemployment should be positively correlated. Figure 6 shows that, instead, the unemployment rate and the vacancy rate are very much negatively correlated.
Figure 6
The Beveridge Curve (Job Vacancy Rate vs. Unemployment Rate)

Monthly data beginning in December, 2000

The lower left cluster of points in figure 6 traces the increase and decrease in unemployment during the brief 2001 recession and the subsequent recovery. The vacancy rate declines as the unemployment rate rises and almost exactly traces the same path backwards as the unemployment rate falls in the recovery. Things are somewhat different in the Great Recession and its aftermath. As the unemployment rate rises from 6 percent to 10 percent in 2008 and 2009, the vacancy rate falls further (inconsistent with the mismatch explanation). There is roughly a half point rise in the vacancy rate in early 2010 with unemployment roughly constant. As the unemployment rate declines from the middle of 2010, the vacancy rate rises (again inconsistent with labor market mismatch as the dominant feature). It is interesting that there seems to be a persistent, roughly half point, rise in the vacancy rate from 2010 through 2017, for any rate of unemployment. But the overwhelming direction of the evidence is that the unemployment rate and the vacancy rate are negatively correlated. This negative correlation is consistent with a general, negative demand shock that both raises unemployment and lowers vacancies as firms produce below their potential output.

Perhaps the simplest way to answer the supply/demand question is to look at key prices. Stagnant supply should raise inflation, other things equal. Of course, this has not happened. Perhaps an even more basic implication of a negative supply shock in a
conventional macroeconomic model is an increase in the real interest rate to choke off excess demand. Figure 7 presents three different real interest rate series: the yield on 10-year Treasury bonds less core PCE inflation, the 5-year bond yield less core PCE inflation, and a pure market measure of the real interest rate, the real yield on the 10-year Treasury Inflation Protected Securities (TIPS, which is available since 2003).

**Figure 7
Real Interest Rates**

To say the least, there is no indication whatsoever of rising real interest rates in the stagnant era of the past decade. The general downward trend of real interest rates over the past few decades, and the collapse to almost zero in recent years, is consistent with an environment of weak demand. In addition, the fact that long-term real interest rates are so low gives every indication that these conditions are expected to persist for years to come.

Aside from the decline in labor productivity growth, there is little supporting evidence for supply-side explanations of US secular stagnation. That is not case on the demand side. Much of our recent work has focused on the US household sector. In a pre-crisis article (Cynamon and Fazzari, 2008, updated in Cynamon and Fazzari, 2013a), we raised concerns about the ability of the US economy to maintain trends of consumption

9 A related explanation for falling interest rates is the “global saving glut,” but this explanation has a “weak demand” aspect. High foreign saving in the US implies a large current account deficit that subtrahs from domestic demand.
and residential construction because they appeared to be financed in part by unsustainable household borrowing. Figure 8 provides perspective on this interpretation.

Figure 8
Household Debt to Disposable Personal Income

![Graph showing household debt to disposable personal income ratio from 1952 to 2015.](image)

After a period of relative stability from the early 1960s through the early 1980s, the household debt-disposable income ratio began to rise. The increase accelerated in the late 1990s to reach a peak on the eve of the Great Recession more than double early 1960s levels. Deleveraging was rapid in the crisis and its aftermath, although the ratio has stabilized since 2015. Many commentators argue that the rapid growth in household debt prior to the crisis boosted demand growth above sustainable levels, growth that was lost when debt growth collapsed after the crisis.10

Our earlier research explores the weakness of household demand in the aftermath of the Great Recession crisis. In Cynamon and Fazzari (2017) we develop a cash flow measure of household demand designed to capture what the household sector actually spends on newly produced goods and service. This measure removes imputed rent on owner-occupied housing, adds in construction of new single-family homes, removes government-financed medical care, and makes many other adjustments to the conventional measure of personal consumption expenditure. Figure 9 shows the real value of our adjusted household demand series starting in 1990.

10 Mason and Jayadev (2014) present a somewhat different interpretation, arguing that much of the rise in the household debt-income ratio prior to the crisis (and especially prior to the late 1990s) was due to high real interest rates and low inflation rather than high consumption growth. Even with this interpretation, however, the dramatic contraction of debt growth following the crisis likely reduced household demand growth, consistent with evidence we present here.
Adjusted household demand measures cash expenditure on newly produced output, including single-family residential construction, by the US household sector estimated with the methods developed in Cynamon and Fazzari (2017) deflated using the personal consumption expenditure chain-weighted price index and updated with annual data through 2016.

The trend line shown in figure 9 plots the simple geometric growth rate of real household demand from the business cycle peak in 2000 to the peak of this series in 2006. Note that this trend also nearly exactly replicates the peak-to-peak trend between 1990 and 2000. We do not claim there is anything deeply structural about this trend. Its relevance is that it represents the actual growth in household demand needed to keep the US economy growing fast enough so that, at least at cycle peaks, output approximated potential. Note that after both the 1990 and 2001 recessions, household demand sags modestly below the peak-to-peak trend, but then catches up (especially in the boom of the late 1990s).

Obviously, the story after 2006 is entirely different. The decline in household demand from 2006 to 2009 is, by far, the largest reduction in the postwar years. More relevant for purposes of this paper, there is no evidence that household demand has regained anything like the trend that was necessary for adequate economic performance prior to the crisis. By 2014, actual demand was more than 20 percent below the previous trend. As time goes on, the past trend becomes less and less relevant as a realistic benchmark for where the economy could go. But it is clear that the past 10 years are unusual.

Figure 10 leads to a similar conclusion in a more historical context. The figure plots real household demand profiles indexed to 100 at cycle peaks going back to 1973.
The profiles are calculated on a per capita basis to correct for different rates of population growth over the past four decades.

Figure 10

Real Per Capita Adjusted Demand Profiles for Recent Business Cycles

Data based on methods from Cynamon and Fazzari (2017). The population measure used for per capita computations is the civilian non-institutional population aged 16 and above.

Both the historic drop and stagnant recovery of household demand is evident in the figure. For example, compare the profile in the recent cycle at year 6 to the final year 6 value for 2000 to 2006: the recent profile is more than 17 percent behind the recovery through 2006. We interpret these figures as consistent with secular stagnation led by weak household demand growth.

New research we are pursuing provides a different angle on the stagnation of household demand growth. With Daniel Cooper of the Federal Reserve Bank of Boston we are studying the financial sustainability of US households using microeconomic data from the Panel Study of Income Dynamics (PSID). The details of this research are complex, but the concept is simple. We ask if current household financial resources are adequate to allow them to continue to consume at their current levels in real terms.
through the remainder of their expected lifetimes. Figure 11 shows the estimated share of sustainable households according to this definition.

Figure 11
Share of US Households with Sustainable Consumption

Authors’ calculations from PSID data. The definition of a sustainable household is discussed in the text.

In the mid 1980s, we estimate that three quarters of American households were consuming at sustainable levels. The sustainable share drops significantly over the next 30 years, reaching a level slightly below 50 percent for our most recent observation in 2013. An important cause of this drop is that, while the definition of sustainability assumes that households will consume at a constant real level going forward, most households in our sample increased their real consumption over time (median annualized real consumption growth is 1.8 percent).

How is this evidence relevant to the question of secular demand stagnation? If households were consuming unsustainably, “beyond their means,” for decades something must change. The evidence in figures 9 and 10 shows that aggregate consumption growth

11 This research is based on consumption measures from the PSID developed in Cooper (2010). We estimate future wage and salary growth by age and education groups. We assume retirement consumption will be 90 percent of working-age consumption in real terms. The calculations include detailed estimates of household Social Security benefits. The data are at low frequency (every five years from 1984 to 1999 and every two years from 1999 through 2013) due to the structure of the PSID surveys. Further details are available from the authors.
did indeed drop. Indeed, in the PSID micro data, there is also a drop in consumption growth in the middle 2000s. The increased share of unsustainable households raises the likelihood of aggregate demand growth stagnation. Also note that even though actual real consumption growth slowed significantly in the PSID sample, the sustainability ratio has not improved. This evidence suggests sluggish consumption growth will continue in coming years.

The exploration of consumption growth in the previous paragraphs links to the theoretical idea discussed earlier about the importance of “autonomous” demand, that is, demand that is not induced by the overall state of the economy. Most of consumption would not be autonomous in this sense, especially over the long run, because consumption must ultimately be financed by income (or the draw down of wealth accumulated from past income flows). But, especially if consumption is debt financed, part of it may be effectively autonomous, possibly for years. The combined evidence above suggests that there was autonomous consumption growth for perhaps as much as two decades prior to the Great Recession. Much, perhaps most, of this growth may have ultimately been unsustainable, but it likely provided an important part of the economy’s demand engine for an extended period. The problem is that with the end of the consumer borrowing bubble and post-crisis deleveraging, this autonomous consumption growth has ended, contributing in a significant way to demand-driven secular stagnation.

If autonomous consumption growth slowed (or reversed) after the crisis, has another component of autonomous consumption come to the rescue? An obvious candidate is government spending, through both direct government purchases of final output and transfer payments that finance demand. Again, basic data offers insights. Figure 12 shows three measures of the share of government in the economy. If the share is growing, the variable is raising overall demand growth while a declining share contributes to demand stagnation. The data include federal, state, and local expenditure.
The strongest positive trend in figure 12, indicating that the growth of government spending accelerates demand, is the share of total government. This series is on a positive trend through the 1960s and was roughly stable in the 1970s and 1980s (although the composition of this spending changed somewhat). Total government spending was slowing demand growth (negative trend in figure 12) in the 1990s before rising in the early 2000s and hitting record highs with the “Obama stimulus” in 2009 and 2010. Government, for several years, replaced some of the demand lost from the household sector. But the falling government share since 2010 indicates that government is slowing overall demand growth, and therefore magnifying the post-crisis stagnation of demand.

The middle line in figure 12 is designed to focus more precisely on the autonomous and independent part of government spending and its effect on demand. This measure excludes unemployment compensation which is clearly related to the state of the economy. The bigger effect comes from removing Social Security. Undoubtedly, Social Security has been rising as a share of the economy and it is critical in supporting demand for many, probably most, of its recipients. But spending financed with Social Security payments is part of the household demand data we present in earlier figures. Therefore, counting it as part of government spending would be double counting to some extent. Another way to appreciate this point is to recognize that if we count rising Social Security as part of government demand stimulus we should exclude household demand financed by Social Security payments from private household demand, which would make the earlier problems identified with stagnant household spending even worse. With this alternative measure (the middle line in figure 12), the trend in the share of
government spending appears approximately flat over decades. Note that this measure still includes large and quickly rising transfers for government-financed medical care, but those expenditures are largely offset by declines in other areas. The positive bump in the Great Recession is still significant, but so is the rapid decline since 2010.

The bottom line in figure 12 excludes all transfer payments and measures the direct effect of government purchases on final demand. This measure is on a clear downward trend since the late 1960s, with the exception of the first decade of the 21st century. (This series combines a modestly positive to flat trend for state and local spending with an even more steeply negative trend for the federal government share.) Direct government demand, perhaps the most obvious autonomous part of demand, is contributing to secular stagnation.

Business investment is clearly not autonomous; it is highly procyclical. Figure 13 plots the long-run share of business investment in GDP.

Figure 13
Nonresidential Business Fixed Investment as a Share of GDP

From 1950 to 1980, demand growth was partially investment led; the rising share of investment implies that capital accumulation accelerated demand growth. Since 1980, although there is some evidence of declining peaks, the investment share has been approximately without trend. Cyclical fluctuations dominate. Business investment plummeted in the Great Recession, as one would expect in the most severe downturn in
decades. By 2012, however, the share of business investment had largely recovered to average levels. To the extent that GDP growth is stagnating, investment is following suit, but just in proportion to output. Investment seems to be neither a long-term source of acceleration or deceleration in recent decades.\footnote{The data in figure 13 also shed light on a typical supply-side explanation for stagnation: the argument that high taxes and regulation have reduced business investment. The recent growth rate of investment may be somewhat weak, like the growth rate of GDP. But the investment share data imply that investment is not particularly weak given the state of the economy. Also note that the data in figure 13 present the share of nominal business investment in nominal GDP. Because the relative price of capital goods has declined, the current share of real investment in real GDP is somewhat higher relative to past cycles than the nominal share in figure 13, and the share peaks for the past several decades in the real share are almost equal.}

Both for completeness and because international trade has become an especially politically charged issue over the last few years, we show the share of net exports in GDP in figure 14.

Figure 14

Net Exports as a Share of GDP

From the late 1970s until the Great Recession, and especially after 1990, net exports have been a drag on demand, contributing to stagnation. The jump in the crisis years mitigated the negative effects of other components of demand. We interpret this change largely in the context of our household demand analysis. The consumption boom led to induced
import demand, explaining much of the decline in net export prior to 2008. When household demand slowed dramatically, net exports improved partially offsetting the loss of household spending (also see van Treeck, 2013). But note that the favorable change in net exports of two to three percent of GDP is dwarfed by the overall shortfall in household demand (greater than 12 percent of GDP as measured by the difference between actual demand and trend demand in figure 9).

The bottom line of this section is that there is little evidence for supply-driven stagnation. But once one recognizes theoretically that persistent stagnation “beyond the short run” can come from the demand side, there is a strong case that sluggish demand growth is the primary culprit. Slow, even negative, growth of government-financed demand is part of the story, but the bigger issue is stagnation in household demand.

Finance, Rising Inequality, and the Dynamics of Household Demand

Following the conclusion from the previous section, the natural question to ask is why household demand growth has stagnated, failing to converge back to its pre-crisis trend despite a recovery that now exceeds eight years. Part of the answer to this question was discussed in the previous section: the unsustainable bubble of household borrowing finally burst. Figure 15 looks at the underlying data in a somewhat different way, showing the real growth rate in household sector liabilities since 1990.
Obviously, household debt grew for a decade much faster than the real economy. The collapse was striking and even well into the recovery, real debt growth remains far below pre-crisis figures.

What explains these striking dynamics? An important part of the answer surely comes from a boom and then bust in access to household credit. Deregulation in household credit markets, tax reform (particularly the 1986 reform that gave birth to widespread HELOCs), technology that enabled credit scoring, and the lending euphoria emerging from the credit boom coupled with the rise in home prices undoubtedly led lenders to aggressively market credit to American households. But why did people actually borrow so much? Again, there are a variety of explanations in the literature. We focus here on one that we consider especially salient: rising income inequality.

Some research argues that rising inequality directly encouraged more borrowing. We present our take on these behavioral issues in Cynamon and Fazzari (2015a) focusing on how household develop norms of behavior in a context of uncertainty about future income, asset returns, life expectancy, etc. Van Treeck (2013) surveys an extensive research literature on rising inequality and its macroeconomic implications for consumption spending. Some of this work argues that rising inequality directly leads to higher spending through the “relative income” and “expenditure cascade” effects. Of course, higher spending plus income stagnation across much of the income distribution leads to higher debt. From this perspective, rising inequality fueled the debt bubble that
kept household demand strong prior to the crisis.\footnote{We find that the increase in the debt-income ratio was concentrated outside the top 5 percent of the income distribution. See Cynamon and Fazzari (2015a).} Consistent with Minsky’s financial instability theory, this rising household financial fragility set the stage for the Great Recession collapse in household lending (figure 15) and subsequent stagnant demand, as documented above.

We find this explanation interesting and there is some direct empirical support for the expenditure cascade model (see the survey in van Treeck, 2013, section 4). Without arguing for a specific behavioral mechanism, we propose in Cynamon and Fazzari (2015a) that inequality is related to the dynamics of household finance and spending leading up to the Great Recession. Our data show that the accumulation of debt is largely concentrated in the bottom 95 percent of the income distribution and that when the crisis hit, the top 5 percent engaged in massive consumption smoothing, raising their consumption-income ratio dramatically, while the bottom 95 percent reduced the consumption-income ratio. This reduction is fundamentally inconsistent with the consumption-smoothing predictions of the mainstream life-cycle model of consumption but is entirely consistent with an environment in which the bottom 95 percent was borrowing unsustainably and then had to cut back on spending when debt growth was severely curtailed.\footnote{The fact that we find differences between the bottom 95 percent and the top 5 percent in Cynamon and Fazzari (2015a) should not be interpreted as evidence that household financial instability was concentrated, in general, among lower-income households. In our new work based on the PSID and reported in figure 11 we find that the decline in financial sustainability takes place across the entire income distribution and that debt-income ratios rise more in the middle class and upper middle class than at the bottom of the distribution. (Note that due to limitations of the PSID sampling frame we cannot make inferences about the very top part of the income distribution.)}

Beyond the question of whether the household debt bubble was caused in significant part by rising inequality, there is a straightforward way in which rising inequality contributes to demand-side stagnation. For decades, economists have proposed that the propensity to consume out of income drops at higher levels of income. This effect is partly behavioral, since more affluent households have more discretionary income (especially relative to current consumption norms) that is more easily allocated to saving and wealth accumulation for retirement, bequest, or simply as a marker of social success. But just as important is the fact that higher income people pay higher tax rates on average so that a bigger slice of each pre-tax dollar is taken out of income of the affluent before it is allocated between consumption and saving.

Direct evidence of the effect of income on the propensity to consume is hard to come by in the US largely because of lack of high-quality microeconomic data on expenditure.\footnote{Although the Federal Reserve’s Consumer Expenditure Survey is often cited for these purposes there are severe measurement problems with this data source. See van Treeck (2013, section 3) for further information and references.} Dynan, et al. (2004) analyze the issue extensively and find lower propensities to consume for households higher in the income distribution. On average, we
find similar results in Cynamon and Fazzari (2015a) for the bottom 95 percent versus the top 5 percent. Our PSID data sample provides detailed evidence on consumption propensities across time and income groups. Figure 16 plots the median ratio of household consumption to pre-tax income for four income groups from the first observation in our data (1984) through the end of the sample (2013).

Figure 16

Median Ratio of Estimated Consumption to Pre-Tax Family Income

Authors calculations based on PSID data. The income percentile groups are determined by average family income in 2009 dollars for each household across all PSID waves in which the household has observations. The bottom and top one percent are excluded due to volatility and small sample sizes in these groups.

The groups in figure 16 are determined from the income distribution of our PSID analysis sample. Median income conforms approximately with national statistics. The PSID sample gets sparse at the top of the income distribution and it contains very few observations for the truly rich. Therefore the highest income group shown in figure 16 corresponds to the upper middle class. The propensity to consume for the top few percentiles of the entire income distribution, the group that has experienced the greatest

16 Median pre-tax family income in the top group in figure 16 is about $200,000 in the last several waves of the sample which is about the lower limit of the top 5 percent of the national income distribution according to CPS data.
increase in its income share, is likely to be lower, perhaps substantially lower, than the bottom line shown in the figure.

This evidence implies that rising inequality lowers the average propensity to consume for the economy as a whole. In Cynamon and Fazzari (2015b) we calibrate a demand-led growth model and show that the model can predict a decline in the economy’s growth path of 10 percent or more as the result the actual shift in income distribution that occurred in the US from 1984 to 2009. This finding implies that rising inequality can indeed explain significant stagnation in demand growth.

This argument must face a timing problem. Income inequality has been rising for close to four decades. Secular stagnation, however, is a persistent but relatively recent phenomenon, most evident in the years since the Great Recession. Through the lens of the demand-led growth models summarized earlier, particularly the “supermultiplier” model, it is important to distinguish between the dynamics of autonomous demand and changes in the multiplier that translate autonomous demand into total output. The most obvious effect of changing income distribution is on the multiplier through the propensity to consume, as in Cynamon and Fazzari (2015b). From this perspective, the rising share of high-income households would lead to a slow, persistent decline in the multiplier starting in the mid 1980s, other things equal. But this multiplier is applied to the dynamic path of autonomous demand. A number of authors identify credit-induced household demand, including residential investment, as a key component of autonomous demand (see Cesaratto et al., 2003, and Girardi and Pariboni, 2017, for example). While one could reasonably argue that some credit-induced household spending is induced by the state of the business cycle, the evidence presented above is consistent with a large and rapidly growing share of autonomous and debt-financed spending from the US household sector beginning no later than the mid 1980s and continuing, even accelerating, until just before the Great Recession. Quantification of these effects is outside the scope of this paper, but our basic interpretation, consistent with our earlier work and the analysis in other research, is that this multi-decade trend of debt-financed autonomous consumption, to a first approximation, offset and postponed the demand drag created by rising inequality. In addition, the rapid growth of government-financed demand from the late 1990s through 2010 delayed the inequality effect (figure 12).

This dynamic changed with the financial crisis and Great Recession. The debt-financed household demand bubble burst, exposing underlying demand weakness, much of which can be reasonably attributed to rising inequality. This interpretation is consistent with the inability for household demand to regain its pre-crisis trend (figures 9 and 10). Along with the significant post-2010 reduction in government-financed demand, we have the recipe for secular stagnation.

Conclusion: Demand-Led Growth Implies Demand Leads Supply

The evidence presented here makes the case for demand-led secular stagnation in the US economy since the Great Recession. No single chart or empirical test “proves” the
case, but the evidence taken together leads in our view to a clear conclusion. This interpretation has begun to enter mainstream thinking, but it remains a minority view. The Federal Reserve is raising interest rates and claiming the economy is close to “full employment.” As of the second quarter of 2017, figures from the U.S. government now put the official “output gap” between real potential output and real GDP at less than 0.2 percent, rather a remarkable figure considering the general anxiety about jobs, wages, and overall economic performance in the country in the first year of the Trump administration.

While some of the rather optimistic assessment of current US data may be due to conceptual mis-measurement (for example, “hidden” unemployment in weak labor force participation, see Dantas and Wray, 2017), we believe that the bigger effect is the result of demand leading supply, the reverse of the mainstream neoclassical synthesis. A weak economy reduces labor force participation and immigration (see Setterfield, 2003). As discussed previously, the recent normal business investment share in a stagnant economy implies a low absolute level of investment. This means that new technology spreads more slowly through production and may limit learning by doing growth in labor productivity. Palley (1996, page 124) writes “[t]echnical progress is therefore both ‘revealed’ and ‘realized’ through investment, so that investment serves simultaneously as the means of (1) expanding the capital stock, (2) feeding technical innovations into the production process, and (3) uncovering further possibilities for innovation.” As DeLong and Summers (2012) point out, low rates of employment lead to “decay” in workers skills, also reducing productivity growth. Dutt (2006, page 325) links labor productivity growth with the state of the economy, summarizing the argument with “the old adage that necessity is the mother of invention. … The speed of technological change is essentially determined by pressures and bottlenecks in the economy.” The US economy has had little “pressure” in the past decade. In Fazzari et al. (2017) we present a demand-led growth model in which changes in the level and growth of the demand path endogenously cause supply to adjust to the demand-driven path.17 Again, weak demand growth pulls supply growth down as well.

These dynamic macroeconomic channels deserve more attention in research. They also have important policy implications. Most obviously, policy must attend to the dynamics of demand growth beyond the short run. We should not accept that either endogenous economic adjustments or enlightened monetary policy will take care of the demand side. So-called “structural” concerns may be more important for demand than supply in many historical circumstances, including the circumstances faced by the U.S. economy as the second decade of the 21st century draws to a close. Given our skepticism

17 In this model, faster demand growth stimulates faster supply growth, but within limits. Reasonable parameter values for the link between the state of the economy and the growth of both labor supply and labor productivity do not allow the economy to grow arbitrarily fast, which would be unreasonable. But a rough calibration of the model in Fazzari et al. (2017) implies that it is entirely plausible for changes in demand growth from something like one percent to three percent to be accommodated by endogenous adjustments of supply.
about the effectiveness of monetary policy to tune demand growth, a more activist and expansionary fiscal policy must be on the table. The kind of collapse in government spending evident in figure 12 for the past seven years is far from benign. When that decline occurred at the same time as a historic drop in household demand the relevant question may be less why do we have secular stagnation, but instead why isn’t stagnation even worse?\(^\text{18}\)

There are certainly reasons why the U.S. could benefit from fiscal expansion, most obviously a need for trillions of dollars of new and renewed public infrastructure. But government spending needs to pass a cost-benefit test and our rough assessment is that we will not achieve a “high pressure” economy with fiscal stimulus alone; we need more private demand. Investment will take care of itself if the demand growth path accelerates. More attention must be paid to household demand, which the data presented here show is the most important source of stagnation. Tax policy needs to target demand; the well worn supply-side arguments for tax cuts on business and high incomes are hugely inefficient in the context of demand-led stagnation.

Finally, rising inequality of income is a prime suspect in secular stagnation. When the top sliver of earners captures most of the growth, the economy’s central function to recycle income back into demand is deeply compromised. Not only must policy address inequality, but we must look more deeply at shifting social norms that affect wage setting and think creatively about how to manage the real challenges globalization poses for lower and middle classes in developed economies. Understanding these issues is difficult; designing effective policy to address inequality in pre-tax incomes may be even harder. But without restoring income growth broadly across the distribution, we fear that secular stagnation will become the new normal.

Kregel (2016) quotes Franklin Roosevelt’s May 22, 1932 Oglethorpe University commencement address:

\[\text{T}h\text{e country needs and, unless I mistake its temper, the country demands bold, persistent experimentation. It is common sense to take a method and try it: If it fails, admit it frankly and try another. But above all, try something. The millions who are in want will not standby silently forever while the things to satisfy their needs are within easy reach. We need enthusiasm, imagination and the ability to face facts, even unpleasant ones, bravely. We need to correct by drastic means, if necessary, the faults in our economic system from which we now suffer.} \]

This sentiment is particularly poignant in the aftermath of Donald Trump’s stunning electoral victory. An important part of the American electorate seemed to behave according to this perspective: we must “try something,” and that “something” needed to be different from the status quo. Trump undoubtedly offered “something,” but despite the

\(^\text{18}\) DeLong and Summers (2012) make a compelling case that fiscal stimulus when demand leads supply need not increase, and may very well significantly reduce, government debt relative to the size of the economy. Also see Cynamon and Fazzari (2013b).
campaign rhetoric it does not appear that “bold, persistent experimentation” with truly new approaches is in the cards. Policy seems more likely to magnify, rather than “correct … the faults in our economic system from which we now suffer.” It is our hope that a focus on the key economic role identified here for demand dynamics, even though such thinking is new to the mainstream macroeconomics of the past 70 years, will provide a path to bold and effective policy experiments.

References

Kregel, J. (2016). What We Could Have Learned from the New Deal in Confronting the Recent Global Recession, Levy Economics Institute Public Policy Brief, number 141.

