Optimal Placement of a Small Order Under a Diffusive Limit Order Book Model

José E. Figueroa-López
Department of Mathematics
Washington University in St. Louis

Market Microstructure:
The CFM-Imperial Workshop
J.P. Morgan, London
Dec. 11, 2017

(Joint work with Hyoeun Lee and Raghu Pasupathy from Purdue U.)
Outline

1. Introduction
2. Model and Assumptions
3. Main Results
4. Concluding Remarks and Future Work
LOB Markets: Market Order vs. Limit Order

Market Order (MO)
- pros: immediate execution (i.e., no execution risk),
- cons: pay spread and an additional fee (f).

Limit Order (LO)
- pros: get “discount" or better price (when executed) and an additional rebate (r),
- cons: execution risk (the order may never be executed),
- discount and execution risk are related to the book depth and flow.
Optimal Placement Problem

Find the level in the LOB (say, buy side) to place a limit order for one share so that to minimizing the "expected cost" during a fixed time horizon t:

\textit{Cost is understood as the price paid for the share (taking into account rebate or fee) minus the initial ask price.}

The optimal placement is aim to give the best tradeoff between execution risk and discount.
Discrete-time model for the best ask price as a symmetric CRW:

\[S_t = S_0 + \sum_{i=1}^{[t/\delta]} X_i, \quad X_i \in \{-\varepsilon, \varepsilon\}, \quad \delta > 0, \]

\[P(X_1 = \varepsilon) = 1 - P(X_1 = -\varepsilon) = \bar{p}, \]

\[P(X_i = \varepsilon | X_{i-1} = \varepsilon) = P(X_i = -\varepsilon | X_{i-1} = -\varepsilon) = p < 1/2. \]

Spread is always constant to one-tick \(\varepsilon \)

Constant probability \(q \in (0, 1] \) that a limit order (of size 1) is executed when sitting at the best bid.

Order placement (either market or limit order) takes place at time 0 and there is no intermediate cancellation.

If the order is not executed by the time horizon \(t \), this is cancelled and changed to a market buy order.
Key Result:

The optimal placement strategy is one of the following:

(i) placement at the best bid $S_0 - \varepsilon$,
(ii) placement at the second best bid $S_0 - 2\varepsilon$,
(iii) placement of a market order at time 0.

Drawbacks:

- No consideration of the initial state of the LOB at time 0; however, everything else the same, placement at a level with a large queue should be less desirable;
- Model does not incorporate any local “drift" or momentum (e.g., say, $P(X_i = \varepsilon | X_{i-1} = \varepsilon) < P(X_i = -\varepsilon | X_{i-1} = -\varepsilon)$);
Our work

- We consider a variation of the problem which incorporates the initial state of the LOB and some assumptions about the order flow during the specified time horizon \([0, t]\);
- We analyze the problem when the time changes are frequent enough so that the dynamics of the best ask price can be well approximated by a diffusive process. This will be the case if, for instance, the flow intensity of market orders at level I is high enough.
- Find condition under which a nontrivial optimal placement (different from the level I or II) exists.
Notation

1. $\tilde{S}_u := \tilde{S}_u^{(\delta, \varepsilon)}$ denotes the best ask price at time $u \geq 0$, when tick size is ε and time step is δ (or another parameter such that average time between price changes goes to 0 when $\delta \to 0$);

2. $\tilde{C}_{\delta, \varepsilon}(x, t)$: expected cost when the time horizon is t and the limit order is placed at $-x$ lower than the best ask price;

3. $\tilde{Y}_t = \inf\{\tilde{S}_u : u \leq t\}$:

4. $\rho = \rho(t, x)$:

 the probability that a limit order placed at level $\tilde{S}_0 - x$ is executed, before time t, during the first time when this is possible (i.e., when $\tilde{S}_u = \tilde{S}_0 - x + \varepsilon$), conditional on the latter event to occur.

 In general, $\rho(t, x)$ would depend on the initial queue size $Q_x(0)$ at the level $\tilde{S}_0 - x$ as we expect that $\rho(t, x) \downarrow$ when $Q_x(0) \nearrow$.

J.E. Figueroa-López (WUSTL)
Expected Cost at $\tilde{S}_0 - x$: Strategy I

We place a buy LO at level $\tilde{S}_0 - x$:

Case 1: $\bar{Y}_t > \tilde{S}_0 - x + \varepsilon$
- Order is not executed, buy MO at $\tilde{S}_t \implies \text{cost} = \tilde{S}_t - \tilde{S}_0 + f$.

Case 2: The first time \tilde{S}_u reaches $\tilde{S}_0 - x + \varepsilon$, τ, happens before t:
- If order is executed before or at $\tau + \delta \leq t$: $\implies \text{cost} = -x - r$.
 This happens with probability $\rho := \rho(x, t) \in (0, 1]$
- If order is not executed before $\tau + \delta \leq t$:
 Cancel LO and buy with MO at $\tilde{S}_0 - x + 2\varepsilon \implies \text{cost} = -x + f + 2\varepsilon$.

Expected Cost:

$$\tilde{C}_{\delta,\varepsilon}(x, t) = E \left[\tilde{S}_t - \tilde{S}_0 \mid \bar{Y}_t > \tilde{S}_0 - x + \varepsilon \right] P(\bar{Y}_t > \tilde{S}_0 - x + \varepsilon)$$
$$+ P(\bar{Y}_t \leq \tilde{S}_0 - x + \varepsilon) [-x - (r + f)\rho(x, t)] + f$$
$$+ 2\varepsilon P(\bar{Y}_t \leq \tilde{S}_0 - x + \varepsilon)(1 - \rho(x, t)).$$
Expected Cost at $\tilde{S}_0 - x$: Strategy II

Case 1: $\tilde{Y}_t > \tilde{S}_0 - x + \varepsilon$
- Order not executed, buy MO at $\tilde{S}_t \implies$ cost $= \tilde{S}_t - \tilde{S}_0 + f$.

Case 2: If \tilde{S}_u reaches $\tilde{S}_0 - x + \varepsilon$ before t:
- The order is executed before time t: \implies cost $= -x - r$.
 This happens with a conditional probability $\tilde{\rho} := \tilde{\rho}(x, t) \in (0, 1]$.
- The order is not executed before t:
 Cancel LO and buy with MO at $\tilde{S}_t \implies$ cost $= \tilde{S}_t - \tilde{S}_0 + f$.

Expected Cost:

$$\tilde{C}_{\delta, \varepsilon}(x, t) = E \left[\tilde{S}_t - \tilde{S}_0 \mid \tilde{Y}_t > \tilde{S}_0 - x + \varepsilon \right] P \left(\tilde{Y}_t > \tilde{S}_0 - x + \varepsilon \right)$$
$$+ P(\tilde{Y}_t \leq \tilde{S}_0 - x + \varepsilon) [-x - r - f] \tilde{\rho}(x, t) + f$$
$$+ E \left[1_{E_t^c} (\tilde{S}_t - \tilde{S}_0) \mid \tilde{Y}_t \leq S_0 - x + \varepsilon \right] P \left(\tilde{Y}_t \leq \tilde{S}_0 - x + \varepsilon \right),$$

where E_t is the event that the order is executed by time t and

$$\tilde{\rho}(x, t) = P(E_t \mid \tilde{Y}_t \leq \tilde{S}_0 - x + \varepsilon).$$
Expected Cost in Continuous-Time

Motivation:

- Several LOB models (including, symmetric and some asymmetric CRW) have been shown to admit a diffusive limit \(\{ S_u \}_{u \geq 0} \) when \(\delta \to 0 \) and \(\varepsilon \to 0 \);

- In the case of the second strategy, it is also natural to assume that \(\tilde{\rho}(x, t) = P(\text{order gets executed} | \bar{Y}_t \leq \bar{S}_0 - x + \varepsilon) \to 1 \), as \(\delta, \varepsilon \to 0 \).

It is natural to consider the following analog continuous time problem:

Expected Cost, Continuous Case.

\[
C(x, t) = E \left[S_t - S_0 \mid Y_t > S_0 - x \right] P(Y_t > S_0 - x) \\
+ P(Y_t \leq S_0 - x) \left(-x - \rho(x, t)(r + f)\right) + f.
\]

where \(\{ S_t \}_t \) is a suitable continuous time process, \(Y_t := \min_{u \leq t} S_u \) and, as for the second strategy, \(\rho(x, t) \) could be 1.
Price Models for S

- Brownian Motion with Drift (Bachelier Model):
 \[dS_u = \mu du + \sigma dW_u, \]
 (reasonable approximation for intermediate intraday time horizons)

- Geometric Brownian Motion (Black Scholes Model)
 \[dS_u = \mu S_u du + \sigma S_u dW_u, \]
 (better model for asset price movement at longer time periods)
Modeling $\rho(x, t)$

This can be estimated from

- the queue size $Q_x^b(0)$ at level $S_0 - x$.
- the cancellation order flow at each level as prescribed by the counting process $N_x^b(s)$ of cancellation.
- assumed order flow at level I: $\alpha_u(i, j)$ is the probability of a price decrease before time u when there are i and j orders at the best ask and bid queues.
- f^a distribution of the best ask queue size after a mid price decrease;

A reasonable formula is given by:

$$
\rho(x, t) := \sum_{i=1}^{\infty} \sum_{j=0}^{Q_x^b(0)} f^a(i) \int_0^t f_\tau(s \mid 0 < \tau < t) P(N_x^b(s) = j) \alpha_{t-s}(i, Q_x^b(0) - j + 1) \, ds,
$$

where τ is the first time the best bid price hits the level $S_0 - x$.
Figure 2: Left: Distribution of best ask queue size after a price decrease from MSFT data from April 17th to April 28th (8 days). The unit of queue size is a batch (100 stocks). Right: Order Flow Intensity Rates per second in number of batches.

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu_a + \theta_a,1$</td>
<td>Depletion rate of best ask queue</td>
<td>19.32</td>
</tr>
<tr>
<td>λ_a</td>
<td>Addition rate of best ask queue</td>
<td>21.78</td>
</tr>
<tr>
<td>$\mu_b + \theta_b,1$</td>
<td>Depletion rate of best bid queue</td>
<td>18.68</td>
</tr>
<tr>
<td>λ_b</td>
<td>Addition rate of best bid queue</td>
<td>21.98</td>
</tr>
</tbody>
</table>
Figure 3: Left Panel: Initial LOB profile $i \rightarrow Q^b_{i\epsilon}(0)$; Right Panel: Graphs of $i \rightarrow \rho(\epsilon i, t)$ with $\epsilon = 0.01$ and $t = 30$ sec (black line), $t = 60$ sec (red dashed line), and $t = 90$ sec (blue dotted line).
Figure 4: $t \rightarrow \rho(0.1, t)$ under the Bachelier model (left) and the Black-Scholes Model (right) for $Q^b_x(0) = 0$ (black), $Q^b_x(0) = 1$ (red), $Q^b_x(0) = 10$ (blue), $Q^b_x(0) = 38$ (magenta), $Q^b_x(0) = 50$ (green), and $Q^b_x(0) = 100$ (yellow). Queue size is in batches (each of size 100 shares). Black line is almost overlapping with red line.
Lemma (F-L, Lee, & Pasupathy, 2017)

For the BM model and placement at level \(S_0 - x\),

\[
C(x, t) = \mu t N\left(\frac{x + \mu t}{\sigma \sqrt{t}}\right) + e^{-2x\mu/\sigma^2} (2x - \mu t) N\left(\frac{-x + \mu t}{\sigma \sqrt{t}}\right) + f
\]
\[
+ \left\{ N\left(\frac{-x - \mu t}{\sigma \sqrt{t}}\right) + e^{-2x\mu/\sigma^2} N\left(\frac{-x + \mu t}{\sigma \sqrt{t}}\right) \right\} (-x - \rho(x, t)(r + f)).
\]

For the GBM model and placement at level \(S_0 e^{-y}\) (\(y > 0\)) (i.e., \(x = S_0 - S_0 e^{-y}\)),

\[
C(y, t) = S_0 e^{\mu t} \left[N\left(\frac{y + \alpha_{+} t}{\sigma \sqrt{t}}\right) - e^{-2y\alpha_{+}/\sigma^2} N\left(\frac{-y + \alpha_{+} t}{\sigma \sqrt{t}}\right) \right] + f - S_0
\]
\[
+ \left\{ N\left(\frac{-y - \alpha_{-} t}{\sigma \sqrt{t}}\right) + e^{-2y\alpha_{-}/\sigma^2} N\left(\frac{-y + \alpha_{-} t}{\sigma \sqrt{t}}\right) \right\} (S_0 e^{-y} - \rho(y, t)(r + f)),
\]

where \(\alpha_{\pm} := \mu \pm \sigma^2/2\).
Expected Cost for GBM: $\mu > 0$ vs. $\mu < 0$

Figure 5: $C(y, t)$ against y with $\rho(r + f) = 0.01$, $\sigma = 0.2$, $S_0 = 10$, $\mu = 0.1$, $t = 0.1$

Figure 6: $C(y, t)$ against y with $\rho(r + f) = 0.01$, $\sigma = 0.2$, $S_0 = 10$, $\mu = -0.1$, $t = 0.1$
Expected Cost for GBM with $\mu < 0$: large vs. small t

Figure 7: $C(y, t)$ against y with $\rho(r + f) = 0.01, \sigma = 0.2, S_0 = 10, \mu = -0.05, t = 0.02$

Figure 8: $C(y, t)$ against y with $\rho(r + f) = 0.01, \sigma = 0.2, S_0 = 10, \mu = -0.05, t = 0.002$.
Optimal Placement Solution

Simplifying Assumption

\(\rho(x, t) \) is independent of \(t \);

Theorem (F-L, Lee, & Pasupathy, 2017)

Let \(x^*(t) \in [0, \infty] \) be such that

\[
x^*(t) = \arg \inf_{x>0} C(x, t),
\]

where \(x^*(t) = 0 \) (resp., \(x^*(t) = \infty \)) means that \(C(0^+, t) < C(x, t) \) (resp., \(C(\infty, t) < C(x, t) \)), for all \(x > 0 \).

1. Suppose that \(\mu \geq 0 \) and \(x \rightarrow \rho(x) \) is decreasing. Then, \(x \rightarrow C(x, t) \) is strictly increasing and, thus, \(x^*(t) = 0 \);

2. Suppose that \(\mu < 0 \) and \(\rho'(0^+) > 0 \). Then, there exists a \(t_0 > 0 \) such that \(x^*(t) \in (0, \infty) \), for all \(t > t_0 \).
0^+ in $C(0^+, t)$ can be interpreted as an order placed at the best bid; The case $\mu = 0$ is the analog of Guo et al. (2016) result.

As it turns out, in the case of $\mu < 0$, $\frac{\partial^2 C}{\partial t \partial x}(0^+, t) < 0$ and t_0 is such that

$$
\frac{\partial C}{\partial x}(0^+, t_0) = 0, \quad \frac{\partial C}{\partial x}(0^+, t) > 0, \quad t < t_0, \quad \frac{\partial C}{\partial x}(0^+, t) < 0, \quad t > t_0.
$$
Asymptotic Behavior of the Optimal Placement Problem

Goals:

- Approximation of critical horizon \((t_0)\) as \(r + f \to 0\),

- optimal placement \((x^*(t)\) or \(y^*(t)\)) behavior when \(t \to t_0\),

- optimal placement behavior in the low volatility regime \((\sigma \to 0)\),

- optimal placement behavior when \(t\) is large enough.

\(^1\)e.g., the fee and rebate for NYSE are 0.003 and 0.0014, respectively.
Critical Horizon \((t_0)\) Behavior

Theorem (F-L, Lee, & Pasupathy, 2017)

Let \(\mu < 0\). Then, as \(r + f \to 0\),

\[
BM: \quad t_0 \sim \frac{\rho(0^+)(r + f)}{2|\mu|}, \quad GBM: \quad t_0 \sim \frac{\rho(0^+)(r + f)}{2|\mu|S_0}.
\]

Figure 9: \(t_0\) (black) for GBM vs. \(\hat{t}_0 := \frac{\rho(0^+)(r + f)}{2|\mu|S_0}\) (red) against \(S_0\) with \(\rho(r + f) = 0.01, \sigma = 0.2, \mu = -0.1\).

Figure 10: \(t_0\) (black) for GBM vs. \(\hat{t}_0 := \frac{\rho(0^+)(r + f)}{2|\mu|S_0}\) (red) against \(S_0\) near \(t=1\) day (same parameters).
Theorem (F-L, Lee, & Pasupathy, 2017)

Suppose that $\mu < 0$ and let t_0 be defined as above. Then, as $t \searrow t_0$,

$$y^*(t) = \kappa_1(t - t_0) + \kappa_2(t - t_0)^2 + o((t - t_0)^2),$$

where

$$\kappa_1 := -\frac{\partial^2 C}{\partial t \partial y} (0, t_0), \quad \kappa_2 := \frac{1}{2} \frac{\partial^3 C}{\partial y^3} (0, t_0) \kappa_1^2 + \frac{\partial^3 C}{\partial t \partial y^2} (0, t_0) \kappa_1 + \frac{1}{2} \frac{\partial^3 C}{\partial y \partial t^2} (0, t_0) \kappa_2 + \frac{1}{2} \frac{\partial^4 C}{\partial y^4} (0, t_0).$$
Optimal Placement behavior near t_0: example

Figure 11: $y^*(t)$ (black) vs. $\kappa_1(\hat{t}_0)(t - \hat{t}_0)$ (red) against t with $\rho(0^+)(r + f) = 0.01$, $\sigma = 0.2$, $\mu = -0.1$, $S_0 = 50$. Here, $\hat{t}_0 := \rho(0^+)(r + f)/2|\mu|S_0$.

Figure 12: $y^*(1\text{ day})$ (black) and $\kappa_1(\hat{t}_0)(1\text{ day} - \hat{t}_0)$ (red) against S_0 with $\rho(0^+)(r + f) = 0.01$, $\sigma = 0.2$, $\mu = -0.1$, $S_0 = 50$.
Figure 13: Approximations against t(days) when $\rho(0^+)(r + f) = 0.006, \sigma = 0.2, \mu = -0.1, S_0 = 50, \hat{t}_0 = \rho(r + f)/(2|\mu|S_0)$.
Conclusions

BM and GBM Model

- nontrivial optimal placement solution exists when t is larger than a critical value t_0
- accurate and simple estimation of threshold horizon, t_0,
- behavior of optimal placement solution when:
 - time horizon is near the threshold,
 - volatility is low,
 - time horizon is long enough.

Future and ongoing work:

- introduce robust optimization (unknown μ and σ),
- consider other price dynamics (e.g., stochastic volatility model, Lévy process)
- Multistep and “large” order problem