Estimation methods for Levy based models of asset prices

José Enrique Figueroa-López

Financial mathematics seminar
Department of Statistics and Applied Probability
UCSB
September 2006
Objectives

To discuss some aspects of Lévy processes related to

1. Stochastic modeling of historical asset prices
2. Statistical inference: Nonparametric methods

Program

I. Models of historical prices
II. Lévy processes
III. Standard statistical methods
IV. Recent nonparametric methods based on high-frequency sampling
Modeling of historical asset prices

Problem: “Construct” stochastic processes that account for the known features of stock prices dynamics.

Motivations: Sensible allocation of money in a portfolio of assets. Risk assessment.

What has been done?

- Geometric Brownian Motion
- Lévy based modeling
- Stochastic volatility models
Geometric Brownian Motion

• The model: The “return” (per dollar invested) of the stock during a small time span dt is approx. normally distributed with constant mean and variance:

$$\frac{S_{t+dt} - S_t}{S_t} \approx \mu \ dt + \sigma \ dW_t.$$

Mean return Volatility B.M.

More precisely,

$$\log \frac{S_{t+\Delta t}}{S_t} = \left(\mu - \frac{\sigma^2}{2} \right) \Delta t + \sigma \left(W_{t+\Delta t} - W_t \right).$$

Log Return on $[t, t+\Delta t)$ $\sim N(0, \Delta t)$

• Partial theoretical justification: The central limit theorem.
What is a Standard Brownian Motion?

A random quantity \(W_t \) evolving in time \(t \geq 0 \) in such a way that

- The change (increment) \(W_{t+\Delta t} - W_t \) during a period \([t, t + \Delta t]\)

 (1) is independent of the “past” \(\{W_s : s \leq t\} \) and

 (2) has Normal distribution law depending only on the time span \(\Delta t \)

- The process is continuous (no jumps or “sudden” changes) and \(W_0 = 0 \).

Implications:

- Efficiency: Future prices depends on the past only through the present value (Markov property)

- Log returns in disjoint periods are independent

- Continuously varying stock prices
● Empirical evidence:
 – The distribution of “short-term” returns exhibit heavy tails and high kurtosis.
 – Sudden changes in prices due to arrival of information

● Natural questions:
 – What is wrong: Independence and/or stationary of increments, continuity? Probably all of them!! Which are more implausible?
 – Can we construct a model that allows fat-tail marginal distributions, while preserving the statistical qualities of the increments and continuity? No!!
Jump-based modeling

Does it make sense?

- The prices move discontinuously driven by discrete trades
- “Sudden large” changes due to arrival of information

Lévy Model: A random quantity X_t evolving in time $t \geq 0$ in such a way that

- The change $X_{t+\Delta t} - X_t$ during the period $[t, t + \Delta t]$ (1) is independent of the “past” $\{X_s : s \leq t\}$ and (2) has distribution depending only on the time span Δt

- The process could exhibit sudden changes (jumps), but these occur at unpredictable times (no fixed jump times). Also, $X_0 = 0$.

Message: Lévy random processes $\{X_t\}_{t \geq 0}$ (if they exist?) are the most natural extensions of Brownian motion.
Geometric Lévy Motion

• The Model:

\[
\log \frac{S_{t+\Delta t}}{S_t} = X_{t+\Delta t} - X_t \iff S_t = S_0 e^{X_t}
\]

Log Return on \([t, t+\Delta t)\)

Increment of a Levy Process

• Implications:

1. Equally-spaced Log returns

\[
R_i := \log \frac{S_{i\Delta t}}{S_{(i-1)\Delta t}} = X_{i\Delta t} - X_{(i-1)\Delta t},
\]

are independent and identically distributed with law \(\mathcal{L}(X_{\Delta t})\).

2. \(\mathbb{E}X_t = mt\) and \(\text{Var}X_t = \sigma^2 t\).
Pitfalls of Geometric Lévy models

Empirical evidence: [Cont: 2001]

- Volatility clustering: High-volatility events tend to cluster in time
- Leverage phenomenon: volatility is negatively correlated with returns
- Some sort of long-range memory: Returns do not exhibit significant autocorrelation; however, the autocorrelation of \textit{absolute returns} decays slowly as a function of the time lag.

Conclusion: “Need” for increasingly more complex models

Other issues:

- Measurement of volatility?
- Measurement of dependence or correlation?
Other Lévy-based alternatives

Time-changed Lévy process: [Carr, Madan, Geman, Yor etc.]

\[\log S_t / S_0 = X_{T_t}, \]

\(T_t \) is an increasing random process (Random Clock).

Stochastic volatility driven by Lévy processes: [B-N and Shephard]

\[\log S_t / S_0 = \int_0^t (\mu - \frac{\sigma_t^2}{2}) dt + \int_0^t \sigma_t dW_t. \]

\[d\sigma_t^2 = -\lambda \sigma_t^2 dt + dX_{\lambda t}, \]

\(\{X_t\}_{t \geq 0} \) is a Lévy process that is nondecreasing.
Stochastic volatility with jumps in the return:

\[
\log \frac{S_t}{S_0} = \int_0^t \mu_u du + \int_0^t \sigma_u dW_u + \left\{ X_t \right. \\
\left. + \sum_{u \leq t} h(\Delta X_u, u) \right. \\
\sum_{u \leq t} h(\Delta X_u, u)
\]

\[\Delta X_t = \text{Size of the jump of } X \text{ at time } t, \text{ and } h(0, \cdot) = 0.\]

SDE with jumps in the returns and the volatility: [Todorov 2005]

\[
\log \frac{S_t}{S_0} = \mu t + \int_0^t \sigma_u dW_u + \sum_{u \leq t} h(\Delta X_u),
\]

\[
\sigma_t^2 = \sum_{u \leq t} f(t - u) k(\Delta X_u),
\]

\[h(0) = k(0) = 0\]
Summary

1. Exponential Lévy models are some of the simplest and most practical alternatives to the shortfalls of the geometric Brownian motion.

2. Capture several stylized empirical features of historical returns.

3. Limitations: Lack of stochastic volatility, leverage, quasi-long-memory, etc.

4. Lévy processes have been increasingly becoming an important tool in asset price modeling.
Statistical properties of Lévy processes

Characterization and parameters

- The statistical law of the process is determined by the distribution of X_t
- Three parameters, two reals σ^2, b, and a measure $\nu(dx)$, so that

 (1) $X_t = bt + \sigma W_t + \lim_{\varepsilon \downarrow 0} \left\{ X_\varepsilon^t - tm_\varepsilon \right\},$

 (2) $X_\varepsilon = \text{Compound Poisson Process with intensity } m_\varepsilon$

 (3) $N_t([a, b]) := \sum_{u \leq t} 1[\Delta X_u \in [a, b]] \sim \text{Poisson} \left(t\nu([a, b]) \right),$

- Lévy Density: A nonnegative function s such that

 $\nu([a, b]) = \int_a^b s(x) dx,$

 Intuition: $s(x)$ dictates the frequency of jumps with sizes near to x
Important remarks

Necessary and sufficient conditions to be a Lévy density:

\[\int_{-1}^{1} s(x)x^2 \, dx < \infty \quad \text{and} \quad \int_{|x|>1} s(x) \, dx < \infty. \]

Consequence:

- A Lévy density is \textit{not} a probability density function:

\[\int_{-\infty}^{\infty} s(x) \, dx = \infty \Rightarrow s(x) \xrightarrow{|x| \to 0} \infty \iff \text{inf. many jumps of arbitrarily small size} \]

- It is easier to specify a Lévy process via the Lévy density than via the marginal distribution of \(X_1 \). Thus, it is easier to model the jump behavior of the process.