Modeling and estimation of the dynamics of asset prices

José Figueroa-López

1Department of Statistics
Purdue University

VIGRE Seminar
Purdue University
Dec. 5, 2007
Outline

1. Modeling of asset prices
 - Asset price evolution
 - The Black-Scholes model
 - Jump-based models

2. Nonparametric estimation of the Lévy density
 - The problem and the method
 - An example
 - Some results
 - Conclusions
1 Objectives:
 - Define a parsimonious stochastic model that accounts for the “stylized” features observed in historical asset prices.
 - Estimate the parameters of the model to the historical prices.

2 Types of assets: Stocks, financial indexes, bond prices, etc.

3 Why?
 - Adequate allocation of money in a portfolio of assets.
 - Risk management.

4 What are these stylized features?
 - Heavy-tails of short-term returns
 - “Sudden big” changes in price (Jumps)
 - “Volatility” clustering (intermittency)
 - Leverage phenomenon
What has been done?

1. Black-Scholes model
2. Lévy based models
3. Stochastic volatility models
What has been done?

1. Black-Scholes model
2. Lévy based models \implies Allows jumps
3. Stochastic volatility models
What has been done?

1. Black-Scholes model
2. Lévy based models \Rightarrow Allows jumps
3. Stochastic volatility models \Rightarrow Allows volatility intermittency
Black-Scholes Model

1 Principles:
 - The (log) returns during disjoint time periods are independent from one another.
 - The log returns on equal size time periods have the same statistical properties.
 - The process evolves continuously in time.

2 The model:

\[
\log \left\{ \frac{S_{t+\Delta t}}{S_t} \right\} \sim \mathcal{N} \left(m \Delta t, \sigma^2 \Delta t \right)
\]

- \(m = \text{Mean rate of return} \)
- \(\sigma = \text{Volatility or measure of variability} \)
The Brownian motion

1. Equivalent formulation:

\[\log \left(\frac{S_{t+\Delta t}}{S_t} \right) = m \Delta t + \sigma \{ W_{t+\Delta t} - W_t \} \]

where \(W \) is the standard Brownian Motion:

- \(W_{t+\Delta t} - W_t \sim \mathcal{N}(0, \Delta t) \)
- Independent increments
- Continuous paths

- Distributions with heavier tails
- "Sudden big" changes (Jumps)
Need for price jumps

1. Introduce jumps via a Compound Poisson Process:
 - The "arrival" of jumps are independent from one another
 - Jumps don’t occur simultaneously
 - Jumps arrive "homogeneously" across time at an average expected rate of λ jumps per unit time.
 - The size of the jumps has the same distribution with density f.

 \[N_t = \text{Number of jumps by time } t; \]
 \[Y_i = \text{Size of the } i\text{th jump} \]
 \[Z_t = \sum_{i=1}^{N_t} Y_i, \]

2. Jump-Diffusion model with finite-jump activity:

 \[\log \left\{ \frac{S_{t+\Delta t}}{S_t} \right\} = m \Delta t + \sigma \{ W_{t+\Delta t} - W_t \} + \{ Z_{t+\Delta t} - Z_t \} \]
Need for price jumps

1. Introduce jumps via a Compound Poisson Process:
 - The “arrival" of jumps are independent from one another
 - Jumps don’t occur simultaneously
 - Jumps arrive “homogeneously" across time at an average expected rate of λ jumps per unit time.
 - The size of the jumps has the same distribution with density f.

 $N_t = \text{Number of jumps by time } t$;
 $Y_i = \text{Size of the } i\text{th jump}$

 $Z_t = \sum_{i=1}^{N_t} Y_i$

2. Jump-Diffusion model with finite-jump activity:

 $\log\left\{ \frac{S_{t+\Delta t}}{S_t} \right\} = m \Delta t + \sigma \{ W_{t+\Delta t} - W_t \} + \{ Z_{t+\Delta t} - Z_t \}$
1. Introduce jumps via a Compound Poisson Process:
 - The “arrival” of jumps are independent from one another
 - Jumps don’t occur simultaneously
 - Jumps arrive “homogeneously” across time at an average expected rate of λ jumps per unit time.
 - The size of the jumps has the same distribution with density f.

 \[N_t = \text{Number of jumps by time } t; \]
 \[Y_i = \text{Size of the } i\text{th jump} \]
 \[Z_t = \sum_{i=1}^{N_t} Y_i, \]

2. Jump-Diffusion model with finite-jump activity:

 \[
 \log \left\{ \frac{S_{t+\Delta t}}{S_t} \right\} = m \Delta t + \sigma \{ W_{t+\Delta t} - W_t \} + \{ Z_{t+\Delta t} - Z_t \}
 \]
Other alternatives based on Poisson jumps

Time-changed jump-diffusion: [Carr, Madan, Geman, Yor etc.]

\[
\log \frac{S_t}{S_0} = X_{T_t},
\]

\[
X(t) = mt + \sigma W_t + Z_t, \quad T(t) = \text{Random Clock}.
\]

Stochastic volatility driven by a jump-diffusion: [B-N and Shephard]

\[
\log \frac{S_t}{S_0} = mt + \int_0^t \sigma_s dW_s.
\]

\[
\sigma_t^2 = \sigma_0^2 + \int_0^t \alpha \sigma_s^2 ds + X_{\alpha t}.
\]

Shot-noise jump diffusion model:

\[
\log \frac{S_t}{S_0} = \int_0^t \mu_s ds + \int_0^t \sigma_s dW_s + \sum_{s \leq t} h(s, \Delta Z_s),
\]
Outline

1. Modeling of asset prices
 Asset price evolution
 The Black-Scholes model
 Jump-based models

2. Nonparametric estimation of the Lévy density
 The problem and the method
 An example
 Some results
 Conclusions
Nonparametric estimation

1 Set-up:
 • \(\{X_t\}_{t \geq 0} \) is a jump-diffusion process with density of jumps \(f \) and intensity of jumps \(\lambda \).
 • The process is discretely sampled at \(0 = t_0 < \cdots < t_n = T \).

2 \(s(x) = \lambda f(x) \) is called the Lévy density of the process.

3 Problem: Estimate \(s \) in a non-parametric fashion.

4 Why is estimation hard?
 The times and sizes of the jumps are latent unobservable variables.

5 Intuition:
 • \(\max_i \{ t_i - t_{i-1} \} \downarrow 0 \implies \text{Recover jumps from } \{X_{t_i} - X_{t_{i-1}}\}_i \).
 • \(t_n \uparrow \infty \implies \text{Increase of relevant sample size.} \)
Nonparametric estimation

1 Set-up:
 • \(\{X_t\}_{t \geq 0} \) is a jump-diffusion process with density of jumps \(f \) and intensity of jumps \(\lambda \).
 • The process is discretely sampled at \(0 = t_0 < \cdots < t_n = T \).

2 \(s(x) = \lambda f(x) \) is called the Lévy density of the process.

3 Problem: Estimate \(s \) in a non-parametric fashion.

4 Why is estimation hard?
 The times and sizes of the jumps are latent unobservable variables.

5 Intuition:
 • \(\max_i \{t_i - t_{i-1}\} \downarrow 0 \implies \) Recover jumps from \(\{X_{t_i} - X_{t_{i-1}}\}_i \).
 • \(t_n \nearrow \infty \implies \) Increase of relevant sample size.
Nonparametric estimation

1. **Set-up:**
 - \(\{X_t\}_{t \geq 0} \) is a jump-diffusion process with density of jumps \(f \) and intensity of jumps \(\lambda \).
 - The process is discretely sampled at \(0 = t_0 < \cdots < t_n = T \).

2. \(s(x) = \lambda f(x) \) is called the **Lévy density** of the process.

3. **Problem:** Estimate \(s \) in a non-parametric fashion.

4. **Why is estimation hard?**
 The times and sizes of the jumps are *latent unobservable variables*.

5. **Intuition:**
 - \(\max_i \{t_i - t_{i-1}\} \searrow 0 \implies \) Recover jumps from \(\{X_{t_i} - X_{t_{i-1}}\}_i \).
 - \(t_n \nearrow \infty \implies \) Increase of relevant sample size.
Nonparametric estimation

1. Set-up:
 - \(\{X_t\}_{t \geq 0} \) is a jump-diffusion process with density of jumps \(f \) and intensity of jumps \(\lambda \).
 - The process is discretely sampled at \(0 = t_0 < \cdots < t_n = T \).

2. \(s(x) = \lambda f(x) \) is called the **Lévy density** of the process.

3. Problem: Estimate \(s \) in a non-parametric fashion.

4. Why is estimation hard?
 - The times and sizes of the jumps are **latent unobservable variables**.

5. Intuition:
 - \(\max_i \{t_i - t_{i-1}\} \searrow 0 \implies \text{Recover jumps from } \{X_{t_i} - X_{t_{i-1}}\}_i \).
 - \(t_n \nearrow \infty \implies \text{Increase of relevant sample size.} \)
Nonparametric estimation

1. Set-up:
 - \(\{ X_t \}_{t \geq 0} \) is a jump-diffusion process with density of jumps \(f \) and intensity of jumps \(\lambda \).
 - The process is discretely sampled at \(0 = t_0 < \cdots < t_n = T \).

2. \(s(x) = \lambda f(x) \) is called the Lévy density of the process.

3. Problem: Estimate \(s \) in a non-parametric fashion.

4. Why is estimation hard?
 The times and sizes of the jumps are latent unobservable variables.

5. Intuition:
 - \(\max_i \{ t_i - t_{i-1} \} \downarrow 0 \implies \) Recover jumps from \(\{ X_{t_i} - X_{t_{i-1}} \}_i \).
 - \(t_n \nearrow \infty \implies \) Increase of relevant sample size.
Histogram type estimators

1. Building blocks:

\[\hat{\beta}(\varphi) := \frac{1}{tn} \sum_{k=1}^{n} \varphi \left(X_{tk} - X_{tk-1} \right) \]

Realized \(\varphi \)-variation per unit time.

2. Histogram estimators:

- Fix an estimation window \([a, b]\).
- Divide the window on \(m\) classes: \((x_0, x_1], \ldots, (x_{m-1}, x_m]\).
- Construct the function estimator:

\[\hat{s}(x) = \hat{\beta}(\varphi_1)\varphi_1(x) + \cdots + \hat{\beta}(\varphi_m)\varphi_m(x), \]

where \(\varphi_i(x) = \frac{1}{\sqrt{x_i-x_{i-1}}}1_{(x_{i-1}, x_i]} \).
Histogram type estimators

1 Building blocks:

\[\hat{\beta}(\varphi) := \frac{1}{t_n} \sum_{k=1}^{n} \varphi \left(X_{t_k} - X_{t_{k-1}} \right) \]

Realized \(\varphi \)-variation per unit time.

2 Histogram estimators:

- Fix an estimation window \([a, b]\).
- Divide the window on \(m \) classes: \((x_0, x_1], \ldots, (x_{m-1}, x_m]\).
- Construct the function estimator:

\[\hat{s}(x) = \hat{\beta}(\varphi_1)\varphi_1(x) + \cdots + \hat{\beta}(\varphi_m)\varphi_m(x), \]

where \(\varphi_i(x) = \frac{1}{\sqrt{x_i - x_{i-1}}}1_{(x_{i-1}, x_i]} \).
An example: Gamma Lévy process

1. Model: Pure-jump process
 \[s(x) = \frac{\alpha}{x} e^{-x/\beta} 1_{\{x > \varepsilon\}}. \]

2. Histogram estimators:
Performance

- **Maximum-Likelihood estimators:** \(\hat{\alpha}_{MLE} = 1.01 \) and \(\hat{\beta}_{MLE} = 0.94 \).

- **Non-parametric least-squares estimators:** \(\hat{\alpha}_{LSE} = 0.93 \) and \(\hat{\beta}_{LSE} = 1.055 \)

 Obtained from fitting the model \(\frac{\alpha}{x} e^{-x/\beta} \) (using least-squares) to the histogram estimator.

- **Sampling mean and standard errors** based on 1000 repetitions.

<table>
<thead>
<tr>
<th>(\Delta t)</th>
<th>Histogram-LSF</th>
<th>MLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>.1</td>
<td>0.81 (0.06)</td>
<td>1.001 (0.01)</td>
</tr>
<tr>
<td>.01</td>
<td>0.92 (0.08)</td>
<td>1.007 (0.07)</td>
</tr>
<tr>
<td>.001</td>
<td>0.93 (0.08)</td>
<td>1.007 (0.07)</td>
</tr>
</tbody>
</table>
Performance

- Maximum-Likelihood estimators: $\hat{\alpha}_{\text{MLE}} = 1.01$ and $\hat{\beta}_{\text{MLE}} = 0.94$.
- Non-parametric least-squares estimators: $\hat{\alpha}_{\text{LSE}} = 0.93$ and $\hat{\beta}_{\text{LSE}} = 1.055$

Obtained from fitting the model $\frac{\alpha}{x} e^{-x/\beta}$ (using least-squares) to the histogram estimator.

- Sampling mean and standard errors based on 1000 repetitions.

<table>
<thead>
<tr>
<th>Δt</th>
<th>Histogram-LSF</th>
<th>MLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>.1</td>
<td>0.81 (0.06)</td>
<td>1.001 (0.01)</td>
</tr>
<tr>
<td>.01</td>
<td>0.92 (0.08)</td>
<td>1.007 (0.07)</td>
</tr>
<tr>
<td>.001</td>
<td>0.93 (0.08)</td>
<td>1.007 (0.07)</td>
</tr>
</tbody>
</table>
Performance

- Maximum-Likelihood estimators: $\hat{\alpha}_{MLE} = 1.01$ and $\hat{\beta}_{MLE} = 0.94$.
- Non-parametric least-squares estimators: $\hat{\alpha}_{LSE} = 0.93$ and $\hat{\beta}_{LSE} = 1.055$
 Obtained from fitting the model $\frac{\alpha}{x} e^{-x/\beta}$ (using least-squares) to the histogram estimator.
- Sampling mean and standard errors based on 1000 repetitions.

<table>
<thead>
<tr>
<th>Δt</th>
<th>Histogram-LSF</th>
<th>MLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>.1</td>
<td>0.81 (0.06)</td>
<td>1.40 (0.50)</td>
</tr>
<tr>
<td>.01</td>
<td>0.92 (0.08)</td>
<td>1.12 (0.31)</td>
</tr>
<tr>
<td>.001</td>
<td>0.93 (0.08)</td>
<td>1.13 (0.34)</td>
</tr>
</tbody>
</table>
Example: One-sided tempered stable distribution

1 Model: Pure-jump Lévy process with Lévy density

\[s(x) = \frac{a}{x^{\alpha+1}} e^{-x/b} 1_{\{x > \varepsilon\}}. \]

2 Sampling means and standard errors based on 100 repetitions.

<table>
<thead>
<tr>
<th>Δt</th>
<th>Histogram - LSF</th>
<th>Misspecified Gamma MLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>.01</td>
<td>0.97 (0.14)</td>
<td>0.09 (0.0002)</td>
</tr>
<tr>
<td></td>
<td>1.2 (0.08)</td>
<td>0.89 (0.079)</td>
</tr>
</tbody>
</table>

Table: Sampling mean and standard errors (sample size=100)

3 Message: Better to apply a low-performance method for a well specified model than a highly efficient method for a mis-specified model.
Example: One-sided tempered stable distribution

1. **Model:** Pure-jump Lévy process with Lévy density
 \[s(x) = \frac{a}{x^{\alpha+1}} e^{-x/b} 1\{x \geq \varepsilon\}. \]

2. **Sampling means and standard errors** based on 100 repetitions.

<table>
<thead>
<tr>
<th>(\Delta t)</th>
<th>Histogram - LSF</th>
<th>Misspecified Gamma MLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.97 (0.14)</td>
<td>1.2 (0.08)</td>
</tr>
<tr>
<td></td>
<td>0.09 (0.0002)</td>
<td>0.89 (0.079)</td>
</tr>
</tbody>
</table>

Table: Sampling mean and standard errors (sample size=100)

3. **Message:** Better to apply a low-performance method for a well-specified model than a highly efficient method for a mis-specified model.
Example: One-sided tempered stable distribution

1. **Model:** Pure-jump Lévy process with Lévy density
 \[s(x) = \frac{a}{x^{\alpha+1}} e^{-x/b} 1\{x>\varepsilon\}. \]

2. **Sampling means and standard errors** based on 100 repetitions.

<table>
<thead>
<tr>
<th>Δt</th>
<th>Histogram - LSF</th>
<th>Misspecified Gamma MLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>.01</td>
<td>0.97 (0.14)</td>
<td>1.2 (0.08)</td>
</tr>
<tr>
<td></td>
<td>0.09 (0.0002)</td>
<td>0.89 (0.079)</td>
</tr>
</tbody>
</table>

 Table: Sampling mean and standard errors (sample size=100)

3. **Message:** Better to apply a low-performance method for a well specified model than a highly efficient method for a mis-specified model.
Some asymptotic results

1. Set-up:

- \(\pi : 0 = t_0 < \cdots < t_n = T \)
 - \(T \) = time horizon and \(\bar{\pi} = \sup_i \{ t_i - t_{i-1} \} \) = mesh.
- \(\hat{s}_m^\pi \) = Histogram estimator on \([a, b]\) based on \(m \) classes and on observation \(X_{t_0}, \ldots, X_{t_n} \).
- \(s_m^\perp \) be the histogram function based on \(m \)-classes that is “closest” to \(s \).
- \(\| p - q \|^2 := \int_a^b (p(x) - q(x))^2 dx \) = distance between \(p \) and \(q \).

2. Results: As \(\bar{\pi} \downarrow 0 \) and \(T \uparrow \infty \),

- \(\| \hat{s}_m - s_m^\perp \| \to 0 \).
- \(\sqrt{T} (\hat{s}_m^\pi(x) - s_m^\perp(x)) \xrightarrow{D} \bar{\sigma}(x) \mathcal{N}(0, 1) \).
- \(\| s_m^\perp - s \| = O(m^{-\alpha}) \), as \(m \to \infty \) if for all \(x, y \in [a, b] \)

\[
|s(x) - s(y)| \leq L|x - y|^\alpha, \quad 0 < \alpha \leq 1.
\]
Some asymptotic results

1. Set-up:
 - \(\pi : 0 = t_0 < \cdots < t_n = T \)
 \(T=\)time horizon and \(\bar{\pi} = \sup_i \{ t_i - t_{i-1} \} = \)mesh.
 - \(\hat{s}_{\pi}^m \) = Histogram estimator on \([a, b]\) based on \(m \) classes and on observation \(X_{t_0}, \ldots, X_{t_n} \).
 - \(s_m^\perp \) be the histogram function based on \(m \)-classes that is “closest” to \(s \).
 - \(\| p - q \|^2 := \int_a^b (p(x) - q(x))^2 \, dx = \) distance between \(p \) and \(q \).

2. Results: As \(\bar{\pi} \nearrow 0 \) and \(T \searrow \infty \),
 - \(\| \hat{s}_m - s_m^\perp \| \to 0 \).
 - \(\sqrt{T} \left(\hat{s}_m^\pi (x) - s_m^\perp (x) \right) \xrightarrow{\mathcal{D}} \bar{\sigma}(x) \mathcal{N}(0, 1) \).
 - \(\| s_m^\perp - s \| = O(\mu^{-\alpha}) \), as \(m \to \infty \) if for all \(x, y \in [a, b] \)
 \[
 | s(x) - s(y) | \leq L | x - y |^\alpha, \quad 0 < \alpha \leq 1.
 \]
Some more asymptotic results

1. How good could an estimator do?
 For any estimators \hat{s}_T of s, based on the whole path of the process up to time T, there exists a "smooth" s and a constant $\varepsilon > 0$ such that:

 $$T^{\frac{2\alpha}{2\alpha+1}} \mathbb{E} \| \hat{s}_T - s \|^2 > \varepsilon, \quad \text{for all } T.$$

2. The fastest rate of convergence that one can hope for is $T^{-2\alpha/(2\alpha+1)}$.

3. How good can we do?
 There exists a "critical" mesh $\delta_T > 0$ such that if $\bar{\pi} < \delta_T$ and $m_T := \left\lfloor T^{1/(2\alpha+1)} \right\rfloor$, then for a constant $B < \infty$,

 $$T^{2\alpha/(2\alpha+1)} \mathbb{E} \| s - \hat{s}_{m_T}^\pi \|^2 < B, \quad \text{for all } s \text{ and } T.$$
Some more asymptotic results

1. How good could an estimator do?
 For any estimators \hat{s}_T of s, based on the whole path of the process up to time T, there exists a "smooth" s and a constant $\varepsilon > 0$ such that:
 \[T^{\frac{2\alpha}{2\alpha+1}} \mathbb{E} \| \hat{s}_T - s \|^2 > \varepsilon, \quad \text{for all } T. \]

2. The fastest rate of convergence that one can hope for is $T^{-2\alpha/(2\alpha+1)}$.

3. How good can we do?
 There exists a "critical" mesh $\delta_T > 0$ such that if $\bar{\pi} < \delta_T$ and $m_T := \lceil T^{1/(2\alpha+1)} \rceil$, then for a constant $B < \infty$,
 \[T^{\frac{2\alpha}{2\alpha+1}} \mathbb{E} \| s - \hat{s}_{m_T}^\pi \|^2 < B, \quad \text{for all } s \text{ and } T. \]
Some more asymptotic results

1. How good could an estimator do?
 For any estimators \hat{s}_T of s, based on the whole path of the process up to time T, there exists a "smooth" s and a constant $\varepsilon > 0$ such that:

 $$T^{\frac{2\alpha}{2\alpha+1}} \mathbb{E} \|\hat{s}_T - s\|^2 > \varepsilon,$$
 for all T.

2. The fastest rate of convergence that one can hope for is $T^{-2\alpha/(2\alpha+1)}$.

3. How good can we do?
 There exists a "critical" mesh $\delta_T > 0$ such that if $\bar{\pi} < \delta_T$ and $m_T := \lceil T^{1/(2\alpha+1)} \rceil$, then for a constant $B < \infty$,

 $$T^{2\alpha/(2\alpha+1)} \mathbb{E} \|s - \hat{s}_{m_T}^{\pi}\|^2 < B,$$
 for all s and T.
About the critical mesh $\delta(T)$

Serious drawback
The method is not very useful unless we can estimate $\delta(T)$.
About the critical mesh $\delta(T)$

Serious drawback
The method is not very useful unless we can estimate $\delta(T)$.

Theorem
1. In the finite-jump activity case, $\delta(T) = o\left(\frac{1}{T}\right)$.
2. In the general case, $\delta(T) < T^{-\frac{1}{a}}$, if $D = [a, b]$ with $a > 0$.
About the critical mesh $\delta(T)$

Serious drawback
The method is not very useful unless we can estimate $\delta(T)$.

Theorem

1. *In the finite-jump activity case*, $\delta(T) = o\left(\frac{1}{T}\right)$.
2. *In the general case*, $\delta(T) < T^{-\frac{1}{a} T}$, if $D = [a, b]$ with $a > 0$.
Serious drawback
The method is not very useful unless we can estimate $\delta(T)$.

Theorem

1. In the finite-jump activity case, $\delta(T) = o\left(\frac{1}{T}\right)$.
2. In the general case, $\delta(T) < T^{-\frac{1}{a}T}$, if $D = [a, b]$ with $a > 0$.
Conclusions I

1. Exponential Lévy models are some of the simplest and most practical alternatives to the shortfalls of the Black-Scholes model.
2. Capture several stylized empirical features of historical returns.
3. Limitations: Lack of stochastic volatility, leverage, quasi-long-memory, etc.
4. Lévy processes are important in constructing more robust asset price models.
Conclusions II

1. We develop a feasible estimation scheme for the Lévy density based on discrete-sampling.
2. The method is flexible (histograms, splines, wavelets), model free, and (in principle) work well for high-frequency data.
3. We are able to estimate the rate of convergence of the method under smoothness assumptions.
4. The rate of convergence in the long-run match the optimal (minimax) rate even under continuous sampling.
For Further Reading I

Figueroa-López.
Small-time asymptotics for generalized moments of Lévy processes and some applications.
Preprint available online, 2007.

Woerner.
Variational Sums and Power Variation: a unifying approach to model selection and estimation in semimartingale models.

Jacod.
Asymptotic properties of power variations of Lévy processes.
Figueroa-Lopez and Houdré.
Empirical distribution of returns

Return during a given time period = $\log \frac{\text{Final price}}{\text{Initial price}}$.

Figure 1: Empirical density of one-hour returns (Bayer) vs. density of fitted hyperbolic (blue) and fitted normal distribution (red).
FIGURE 1.2: Evolution of SLM (NYSE), January-March 1993, compared with a scenario simulated from a Black-Scholes model with same annualized return and volatility.
Times series of returns

Five-minute log-return for Yen/Deutsehemark exchange rate, 1992-1995

BMW daily log-returns
Lévy-Itô decomposition

\[X_t = bt + \sigma W_t + \text{Pure jump process} \]

Examples of Lévy processes: compound Poisson process (left) and Lévy jump-diffusion
Figure 1.5: Densities and log-densities of high frequency data.
Empirical performance of the CGMY Lévy model
Madan, Carr, Geman, Yor, and others
Lévy processes with jumps

Compound Poisson Process

Examples of Lévy processes: compound Poisson process (left) and Lévy jump-diffusion