Short-time Asymptotics for
Stochastic Differential Equations with Jumps

José E. Figueroa-López

1Department of Mathematics
Washington University in St. Louis

Statistics/Probability Seminar
Oct 9, 2015

Joint work with C. Houdré, Y. Luo, S. Ólafsson, and C. Ouyang.
Outline

1 Motivation and Background

2 The Problem

3 Tools and Some Results

4 Conclusions
Many phenomena are best understood as dynamical systems operating in continuous time.

A Stochastic Process is a collection of random variables $X = \{X_t\}_{t \geq 0}$, which are indexed by time t and are generated by the same random experiment \mathcal{E}.

Constructions follow a bottom-up approach from simple to more complex models.

The most basic processes are:

- Brownian Motion $W = \{W_t\}_{t \geq 0}$ with volatility $\sigma \in (0, \infty)$:
 - The paths $t \rightarrow W_t(\omega)$ are continuous for any outcome ω of the experiment \mathcal{E};
 - $t_1 < \cdots < t_n : W_{t_2} - W_{t_1}, \ldots, W_{t_n} - W_{t_{n-1}}$ indep. $\mathcal{N}(0, \sigma(t_n - t_{n-1}))$.
- Poisson Process $N = \{N_t\}_{t \geq 0}$ with intensity $\lambda \in (0, \infty)$ of jumps:
 - The paths $t \rightarrow N_t(\omega)$ are nondecreasing piece-wise constant jumping by ones for any outcome ω of \mathcal{E};
 - $t_1 < \cdots < t_n : N_{t_2} - N_{t_1}, \ldots, N_{t_n} - N_{t_{n-1}}$ indep. $\mathcal{P}(\lambda(t_n - t_{n-1}))$, $\mathcal{P}(\lambda(t_{n-1} - t_{n-2}))$.

A Stochastic Differential Equation is one of the most popular ways to define a stochastic process from more basic building blocks.
Many phenomena are best understood as dynamical systems operating in continuous time.

A Stochastic Process is a collection of random variables \(X = \{X_t\}_{t \geq 0} \), which are indexed by time \(t \) and are generated by the same random experiment \(\mathcal{E} \).

Constructions follow a bottom-up approach from simple to more complex models.

The most basic processes are:

- **Brownian Motion** \(W = \{W_t\}_{t \geq 0} \) with volatility \(\sigma \in (0, \infty) \):
 - The paths \(t \to W_t(\omega) \) are continuous for any outcome \(\omega \) of the experiment \(\mathcal{E} \);
 - \(t_1 < \cdots < t_n \): \(W_{t_2} - W_{t_1}, \ldots, W_{t_n} - W_{t_{n-1}} \) independent \(\mathcal{N}(0, \sigma(t_2 - t_1)), \ldots, \mathcal{N}(0, \sigma(t_n - t_{n-1})) \).

- **Poisson Process** \(N = \{N_t\}_{t \geq 0} \) with intensity \(\lambda \in (0, \infty) \) of jumps:
 - The paths \(t \to N_t(\omega) \) are nondecreasing piece-wise constant jumping by ones for any outcome \(\omega \) of \(\mathcal{E} \);
 - \(t_1 < \cdots < t_n \): \(N_{t_2} - N_{t_1}, \ldots, N_{t_n} - N_{t_{n-1}} \) independent \(\mathcal{P}(\lambda(t_2 - t_1)), \ldots, \mathcal{P}(\lambda(t_n - t_{n-1})) \).

A Stochastic Differential Equation is one of the most popular ways to define a stochastic process from more basic building blocks.
Many phenomena are best understood as dynamical systems operating in continuous time.

A **Stochastic Process** is a collection of random variables \(X = \{X_t\}_{t \geq 0} \), which are indexed by time \(t \) and are generated by the same random experiment \(E \).

Constructions follow a **bottom-up** approach from simple to more complex models.

The most basic processes are:

- **Brownian Motion** \(W = \{W_t\}_{t \geq 0} \) with volatility \(\sigma \in (0, \infty) \):
 - The paths \(t \rightarrow W_t(\omega) \) are continuous for any outcome \(\omega \) of the experiment \(E \);
 - \(t_1 < \cdots < t_n : W_{t_2} - W_{t_1}, \ldots, W_{t_n} - W_{t_{n-1}} \) indep. \(\mathcal{N}(0, \sigma(t_2 - t_1)), \ldots, \mathcal{N}(0, \sigma(t_n - t_{n-1})) \).

- **Poisson Process** \(N = \{N_t\}_{t \geq 0} \) with intensity \(\lambda \in (0, \infty) \) of jumps:
 - The paths \(t \rightarrow N_t(\omega) \) are nondecreasing piece-wise constant jumping by ones for any outcome \(\omega \) of \(E \);
 - \(t_1 < \cdots < t_n : N_{t_2} - N_{t_1}, \ldots, N_{t_n} - N_{t_{n-1}} \) indep. \(\mathcal{P}(\lambda(t_2 - t_1)), \ldots, \mathcal{P}(\lambda(t_n - t_{n-1})) \).

A **Stochastic Differential Equation** is one of the most popular ways to define a stochastic process from more basic building blocks.
Many phenomena are best understood as dynamical systems operating in continuous time.

A Stochastic Process is a collection of random variables $X = \{X_t\}_{t \geq 0}$, which are indexed by time t and are generated by the same random experiment \mathcal{E}.

Constructions follow a bottom-up approach from simple to more complex models.

The most basic processes are:

- **Brownian Motion** $W = \{W_t\}_{t \geq 0}$ with volatility $\sigma \in (0, \infty)$:
 - The paths $t \to W_t(\omega)$ are continuous for any outcome ω of the experiment \mathcal{E};
 - $t_1 < \cdots < t_n : W_{t_2} - W_{t_1}, \ldots, W_{t_n} - W_{t_{n-1}}$ indep. $\mathcal{N}(0, \sigma(t_2 - t_1)), \ldots, \mathcal{N}(0, \sigma(t_n - t_{n-1}))$.

- **Poisson Process** $N = \{N_t\}_{t \geq 0}$ with intensity $\lambda \in (0, \infty)$ of jumps:
 - The paths $t \to N_t(\omega)$ are nondecreasing piece-wise constant jumping by ones for any outcome ω of \mathcal{E};
 - $t_1 < \cdots < t_n : N_{t_2} - N_{t_1}, \ldots, N_{t_n} - N_{t_{n-1}}$ indep. $\mathcal{P}(\lambda(t_2 - t_1)), \ldots, \mathcal{P}(\lambda(t_n - t_{n-1}))$.

A Stochastic Differential Equation is one of the most popular ways to define a stochastic process from more basic building blocks.
Many phenomena are best understood as dynamical systems operating in continuous time.

A Stochastic Process is a collection of random variables $X = \{X_t\}_{t \geq 0}$, which are indexed by time t and are generated by the same random experiment \mathcal{E}.

Constructions follow a bottom-up approach from simple to more complex models.

The most basic processes are:

- **Brownian Motion** $W = \{W_t\}_{t \geq 0}$ with volatility $\sigma \in (0, \infty)$:
 - The paths $t \to W_t(\omega)$ are continuous for any outcome ω of the experiment \mathcal{E};
 - $t_1 < \cdots < t_n : W_{t_2} - W_{t_1}, \ldots, W_{t_n} - W_{t_{n-1}}$ indep. $\mathcal{N}(0, \sigma(t_2 - t_1)), \ldots, \mathcal{N}(0, \sigma(t_n - t_{n-1}))$.

- **Poisson Process** $N = \{N_t\}_{t \geq 0}$ with intensity $\lambda \in (0, \infty)$ of jumps:
 - The paths $t \to N_t(\omega)$ are nondecreasing piece-wise constant jumping by ones for any outcome ω of \mathcal{E};
 - $t_1 < \cdots < t_n : N_{t_2} - N_{t_1}, \ldots, N_{t_n} - N_{t_{n-1}}$ indep. $\mathcal{P}(\lambda(t_2 - t_1)), \ldots, \mathcal{P}(\lambda(t_n - t_{n-1}))$.

A Stochastic Differential Equation is one of the most popular ways to define a stochastic process from more basic building blocks.
Many phenomena are best understood as dynamical systems operating in continuous time.

A Stochastic Process is a collection of random variables $X = \{X_t\}_{t \geq 0}$, which are indexed by time t and are generated by the same random experiment \mathcal{E}.

Constructions follow a bottom-up approach from simple to more complex models.

The most basic processes are:

- **Brownian Motion** $W = \{W_t\}_{t \geq 0}$ with volatility $\sigma \in (0, \infty)$:
 - The paths $t \rightarrow W_t(\omega)$ are continuous for any outcome ω of the experiment \mathcal{E};
 - $t_1 < \cdots < t_n : W_{t_2} - W_{t_1}, \ldots, W_{t_n} - W_{t_{n-1}}$ indep. $\mathcal{N}(0, \sigma(t_2 - t_1)), \ldots, \mathcal{N}(0, \sigma(t_n - t_{n-1}))$.

- **Poisson Process** $N = \{N_t\}_{t \geq 0}$ with intensity $\lambda \in (0, \infty)$ of jumps:
 - The paths $t \rightarrow N_t(\omega)$ are nondecreasing piece-wise constant jumping by ones for any outcome ω of \mathcal{E};
 - $t_1 < \cdots < t_n : N_{t_2} - N_{t_1}, \ldots, N_{t_n} - N_{t_{n-1}}$ indep. $\mathcal{P}(\lambda(t_2 - t_1)), \ldots, \mathcal{P}(\lambda(t_n - t_{n-1}))$.

A Stochastic Differential Equation is one of the most popular ways to define a stochastic process from more basic building blocks.
Many phenomena are best understood as dynamical systems operating in continuous time.

A Stochastic Process is a collection of random variables \(X = \{X_t\}_{t \geq 0} \), which are indexed by time \(t \) and are generated by the same random experiment \(\mathcal{E} \).

Constructions follow a bottom-up approach from simple to more complex models.

The most basic processes are:

- **Brownian Motion** \(W = \{W_t\}_{t \geq 0} \) with volatility \(\sigma \in (0, \infty) \):
 - The paths \(t \rightarrow W_t(\omega) \) are continuous for any outcome \(\omega \) of the experiment \(\mathcal{E} \);
 - \(t_1 < \cdots < t_n : W_{t_2} - W_{t_1}, \ldots, W_{t_n} - W_{t_{n-1}} \) indep. \(\mathcal{N}(0, \sigma(t_2 - t_1)), \ldots, \mathcal{N}(0, \sigma(t_n - t_{n-1})) \).

- **Poisson Process** \(N = \{N_t\}_{t \geq 0} \) with intensity \(\lambda \in (0, \infty) \) of jumps:
 - The paths \(t \rightarrow N_t(\omega) \) are nondecreasing piece-wise constant jumping by ones for any outcome \(\omega \) of \(\mathcal{E} \);
 - \(t_1 < \cdots < t_n : N_{t_2} - N_{t_1}, \ldots, N_{t_n} - N_{t_{n-1}} \) indep. \(\mathcal{P}(\lambda(t_2 - t_1)), \ldots, \mathcal{P}(\lambda(t_n - t_{n-1})) \).

A Stochastic Differential Equation is one of the most popular ways to define a stochastic process from more basic building blocks.
An overview of common SDEs

1 Continuous Diffusion Process:

\[dX_t = b(X_t) \, dt + \sigma(X_t) \, dW_t \]

\[b : \mathbb{R} \to \mathbb{R}, \quad \sigma : \mathbb{R} \to [0, \infty), \]

\[W \sim \text{standard B.M.} \]

\[X_{t+dt} - X_t \approx b(X_t) \, dt + \sigma(X_t) (W_{t+dt} - W_t) \]

2 Simple Jump-Diffusion Process:

\[dX_t = b(X_t) \, dt + \sigma(X_t) \, dW_t + \gamma(X_t, J_t) \, dN_t \]

\[\{J_t\}_{t \geq 0} \overset{\text{i.i.d.}}{\sim} g, \quad N \sim \text{Poisson}(\lambda), \]

\[X_{t+dt} - X_t \approx b(X_t) \, dt + \sigma(X_t) (W_{t+dt} - W_t) + \gamma(X_t, J_t) (N_{t+dt} - N_t) \]

3 Jump-Diffusion Process with STATE-Dependent Jump Intensity:

\[dX_t = b(X_t) \, dt + \sigma(X_t) \, dW_t + \gamma(X_t, J_t) \, dM_t \]

\[t \to M_t \text{ is a counting process}^1 \text{ such that } \mathbb{E}[M_{t+dt} - M_t] \approx \mathbb{E} [\lambda(X_t) \, dt], \text{ for} \]

\[\lambda : \mathbb{R} \to [0, \infty); \]

\[J_t \sim g(\cdot; X_t), \text{ where, for each } x \in \mathbb{R}, g(\cdot; x) \text{ is a pdf (i.e., } \int g(z; x)dz = 1) \]

1 Nondecreasing piece-wise constant paths jumping by ones
An overview of common SDEs

1. **Continuous Diffusion Process:**
 \[
 dX_t = b(X_t) \, dt + \sigma(X_t) \, dW_t \quad b : \mathbb{R} \to \mathbb{R}, \quad \sigma : \mathbb{R} \to [0, \infty),
 \]
 \(W \sim \text{standard B.M.}\)
 \[
 X_{t+dt} - X_t \approx b(X_t) \, dt + \sigma(X_t) \left(W_{t+dt} - W_t\right)
 \]

2. **Simple Jump-Diffusion Process:**
 \[
 dX_t = b(X_t) \, dt + \sigma(X_t) \, dW_t + \gamma(X_t, J_t) \, dN_t \quad \{J_t\}_{t \geq 0} \overset{\text{i.i.d.}}{\sim} g, \quad N \sim \text{Poisson}(\lambda),
 \]
 \[
 X_{t+dt} - X_t \approx b(X_t) \, dt + \sigma(X_t) \left(W_{t+dt} - W_t\right) + \gamma(X_t, J_t) \left(N_{t+dt} - N_t\right)
 \]

3. **Jump-Diffusion Process with STATE-Dependent Jump Intensity:**
 \[
 dX_t = b(X_t) \, dt + \sigma(X_t) \, dW_t + \gamma(X_t, J_t) \, dM_t
 \]
 \(t \to M_t\) is a counting process\(^1\) such that \(\mathbb{E} [M_{t+dt} - M_t] \approx \mathbb{E} [\lambda(X_t) \, dt],\) for
 \(\lambda : \mathbb{R} \to [0, \infty);\)
 \(J_t \sim g(\cdot; X_t),\) where, for each \(x \in \mathbb{R},\) \(g(\cdot; x)\) is a pdf (i.e., \(\int g(z; x) \, dz = 1).\)

\(^1\)Nondecreasing piece-wise constant paths jumping by ones
An overview of common SDEs

1 **Continuous Diffusion Process:**

\[
dx_t = b(X_t) \, dt + \sigma(X_t) \, dW_t \]

\(b : \mathbb{R} \to \mathbb{R}, \quad \sigma : \mathbb{R} \to [0, \infty), \)

\(W \sim \text{standard B.M.} \)

\[
X_{t+dt} - X_t \approx b(X_t) \, dt + \sigma(X_t) (W_{t+dt} - W_t)
\]

2 **Simple Jump-Diffusion Process:**

\[
dx_t = b(X_t) \, dt + \sigma(X_t) \, dW_t + \gamma(X_t, J_t) \, dN_t
\]

\(\{J_t\}_{t \geq 0} \stackrel{\text{i.i.d.}}{\sim} g, \quad N \sim \text{Poisson}(\lambda), \)

\[
X_{t+dt} - X_t \approx b(X_t) \, dt + \sigma(X_t) (W_{t+dt} - W_t) + \gamma(X_t, J_t) (N_{t+dt} - N_t)
\]

3 **Jump-Diffusion Process with STATE-Dependent Jump Intensity:**

\[
dx_t = b(X_t) \, dt + \sigma(X_t) \, dW_t + \gamma(X_t, J_t) \, dM_t
\]

\(t \to M_t \) is a **counting process\(^1\) such that \(\mathbb{E} [M_{t+dt} - M_t] \approx \mathbb{E} [\lambda(X_t) \, dt], \) for \(\lambda : \mathbb{R} \to [0, \infty); \)

\(J_t \sim g(\cdot; X_t), \) where, for each \(x \in \mathbb{R}, \) \(g(\cdot; x) \) is a pdf (i.e., \(\int g(z; x) \, dz = 1). \)

\(^1\)Nondecreasing piece-wise constant paths jumping by ones
Simulation of State-Dependent Jump-Diffusions

Goal: (Approximately) generate a fine discrete “skeleton” $X_{t_0}, X_{t_1}, \ldots, X_{t_n}$ of the process where $0 = t_0 < t_1 < \cdots < t_n$ are frequent enough sampling times;

1. Set $X_{t_0} = x$ (given starting point) and $\Delta_i = t_{i+1} - t_i$;
2. Iteratively generate, for $i = 0, \ldots, n - 1$,
 - Standard normal r.v. Z_i
 - A r.v. J_i with density $g(\cdot; X_{t_i})$
 - A Bernoulli r.v. I_i with $\mathbb{P}(I_i = 1) = 1 - \mathbb{P}(I_i = 0) = \lambda(X_{t_i})\Delta_i$
 - $X_{t_{i+1}} = X_{t_i} + b(X_{t_i})\Delta_i + \sigma(X_{t_i})\sqrt{\Delta_i} Z_i + \gamma(X_{t_i}, J_i) I_i$,

The Problem

- Let \(\{X_t\}_{t \geq 0} \) be a state-dependent jump diffusion;
- **Goal**: Given a suitable function \(f : \mathbb{R} \to \mathbb{R} \), we wish to study the asymptotic behavior, as \(t \to 0 \), of the generalized moment functional

\[
\beta_t(f) := \mathbb{E}[f(X_t)].
\]

- **Common Examples**:

\[
\begin{align*}
 f(x) &= x^k, \ (k \in \mathbb{N}), \\
 f(x) &= e^{iux}, \ (u \in \mathbb{R}), \\
 f(x) &= 1_{a < x < b}, \ (-\infty \leq a < b \leq \infty),
\end{align*}
\]

- If, say, \(f \) is continuous in a neighborhood of the starting point \(x \),

\[
\lim_{t \to 0} \beta_t(f) = f(x),
\]

(provided that \(f \) is appropriately bounded);

- Rate of convergence in \(\beta_t(f) \xrightarrow{t \to 0} f(x) \)?
Applications

1 Statistical Inference based on high-frequency data

- A great deal of inference methods are based on high-frequency realized variations;
- Given a discrete record of consecutive sampling observations \(X_{t_1}, \ldots, X_{t_n}\) regular in time \((t_i = iT/n)\),
 \[
 \hat{\beta}_{n,t}(f) := \sum_{i=1}^{n} f \left(X_{t_i} - X_{t_{i-1}} \right)
 \]
 is called the realized \(f\)-variation of \(X\);
- The statistical properties of \(\hat{\beta}_n(f)\), as \(n \to \infty\), boil down to short-time asymptotics for certain moment functionals

2 Mathematical Finance

- In finance, \(\beta_t(f) := \mathbb{E}[f(X_t)]\) is interpreted as the price of a claim that pays the amount \(f(X_t)\) at time \(t\) when the price of a stock security is \(e^{X_t}\);
- The asymptotic behavior of \(\beta_t(f)\) is crucial for model testing and calibration based on short maturity \(t\) option prices
Applications

1 Statistical Inference based on high-frequency data

- A great deal of inference methods are based on high-frequency realized variations;
- Given a discrete record of consecutive sampling observations X_{t_1}, \ldots, X_{t_n} regular in time ($t_i = iT/n$),
 \[\hat{\beta}_{n,t} (f) := \sum_{i=1}^{n} f \left(X_{t_i} - X_{t_{i-1}} \right) \]
 is called the realized f-variation of X;
- The statistical properties of $\hat{\beta}_n (f)$, as $n \to \infty$, boil down to short-time asymptotics for certain moment functionals.

2 Mathematical Finance

- In finance, $\beta_t (f) := \mathbb{E} [f(X_t)]$ is interpreted as the price of a claim that pays the amount $f(X_t)$ at time t when the price of a stock security is e^{X_t};
- The asymptotic behavior of $\beta_t (f)$ is crucial for model testing and calibration based on short maturity t option prices.
Applications

1. Statistical Inference based on high-frequency data
 - A great deal of inference methods are based on high-frequency realized variations;
 - Given a discrete record of consecutive sampling observations X_{t_1}, \ldots, X_{t_n} regular in time ($t_i = iT/n$),
 \[
 \hat{\beta}_{n,t}(f) := \sum_{i=1}^{n} f \left(X_{t_i} - X_{t_{i-1}} \right)
 \]
 is called the realized f-variation of X;
 - The statistical properties of $\hat{\beta}_n(f)$, as $n \to \infty$, boil down to short-time asymptotics for certain moment functionals

2. Mathematical Finance
 - In finance, $\beta_t(f) := \mathbb{E}[f(X_t)]$ is interpreted as the price of a claim that pays the amount $f(X_t)$ at time t when the price of a stock security is e^{X_t};
 - The asymptotic behavior of $\beta_t(f)$ is crucial for model testing and calibration based on short maturity t option prices
Applications

1. Statistical Inference based on high-frequency data

 - A great deal of inference methods are based on high-frequency realized variations;
 - Given a discrete record of consecutive sampling observations X_{t_1}, \ldots, X_{t_n} regular in time ($t_i = iT/n$),
 \[
 \hat{\beta}_{n,t}(f) := \sum_{i=1}^{n} f \left(X_{t_i} - X_{t_{i-1}} \right)
 \]
 is called the realized f-variation of X;
 - The statistical properties of $\hat{\beta}_n(f)$, as $n \to \infty$, boil down to short-time asymptotics for certain moment functionals

2. Mathematical Finance

 - In finance, $\beta_t(f) := \mathbb{E} [f(X_t)]$ is interpreted as the price of a claim that pays the amount $f(X_t)$ at time t when the price of a stock security is e^{X_t};
 - The asymptotic behavior of $\beta_t(f)$ is crucial for model testing and calibration based on short maturity t option prices
Applications

1. Statistical Inference based on high-frequency data

 - A great deal of inference methods are based on high-frequency realized variations;
 - Given a discrete record of consecutive sampling observations \(X_{t_1}, \ldots, X_{t_n} \) regular in time \((t_i = iT/n) \),
 \[
 \hat{\beta}_{n,t}(f) := \sum_{i=1}^{n} f \left(X_{t_i} - X_{t_{i-1}} \right)
 \]
 is called the realized \(f \)-variation of \(X \);
 - The statistical properties of \(\hat{\beta}_n(f) \), as \(n \to \infty \), boil down to short-time asymptotics for certain moment functionals

2. Mathematical Finance

 - In finance, \(\beta_t(f) := \mathbb{E} [f(X_t)] \) is interpreted as the price of a claim that pays the amount \(f(X_t) \) at time \(t \) when the price of a stock security is \(e^{X_t} \);
 - The asymptotic behavior of \(\beta_t(f) \) is crucial for model testing and calibration based on short maturity \(t \) option prices
Applications

1. Statistical Inference based on high-frequency data
 - A great deal of inference methods are based on high-frequency realized variations;
 - Given a discrete record of consecutive sampling observations X_{t_1}, \ldots, X_{t_n} regular in time ($t_i = iT/n$),
 \[\hat{\beta}_{n,t}(f) := \sum_{i=1}^{n} f(X_{t_i} - X_{t_{i-1}}) \]
 is called the realized f-variation of X;
 - The statistical properties of $\hat{\beta}_n(f)$, as $n \to \infty$, boil down to short-time asymptotics for certain moment functionals

2. Mathematical Finance
 - In finance, $\beta_t(f) := E[f(X_t)]$ is interpreted as the price of a claim that pays the amount $f(X_t)$ at time t when the price of a stock security is e^{X_t};
 - The asymptotic behavior of $\beta_t(f)$ is crucial for model testing and calibration based on short maturity t option prices
Applications

1. **Statistical Inference based on high-frequency data**
 - A great deal of inference methods are based on high-frequency realized variations;
 - Given a discrete record of consecutive sampling observations X_{t_1}, \ldots, X_{t_n} regular in time ($t_i = iT/n$),
 $$\hat{\beta}_{n,t}(f) := \sum_{i=1}^{n} f \left(X_{t_i} - X_{t_{i-1}} \right)$$
 is called the realized f-variation of X;
 - The statistical properties of $\hat{\beta}_n(f)$, as $n \to \infty$, boil down to short-time asymptotics for certain moment functionals

2. **Mathematical Finance**
 - In finance, $\beta_t(f) := \mathbb{E} \left[f \left(X_t \right) \right]$ is interpreted as the price of a claim that pays the amount $f(X_t)$ at time t when the price of a stock security is e^{X_t};
 - The asymptotic behavior of $\beta_t(f)$ is crucial for model testing and calibration based on short maturity t option prices
Smooth moment functions (Dynkin’s formula)

- **Infinitesimal Generator:** For \(f \in C_b^2(\mathbb{R}) \), let
 \[
 Lf(x) = b(x)f'(x) + \frac{\sigma^2(x)}{2}f''(x) + \int_\mathbb{R} \{f(x + \gamma(x, z)) - f(x)\} \lambda(x)g(z; x) \, dz;
 \]

- **Key Property:**
 \[
 \lim_{t \to 0} \frac{\mathbb{E}[f(X_t)] - f(x)}{t} = Lf(x) \iff \beta_t(f) := \mathbb{E}[f(X_t)] = f(x) + tLf(x) + o(t).
 \]

- **Dynkin’s formula:**
 \[
 \mathbb{E}[f(X_t)] = f(x) + \int_0^t \mathbb{E}[Lf(X_r)] \, dr = f(x) + tLf(x) + o(t) \quad \text{(since } Lf \in C_b(\mathbb{R}));
 \]

- **Implication:** If \(Lf \in C_b^2 \),
 \[
 \mathbb{E}[f(X_t)] = f(x) + \int_0^t \mathbb{E}[Lf(X_r)] \, dr
 = f(x) + \int_0^t \left\{ Lf(x) + \int_0^r \mathbb{E}\left((L^2 f)(X_s) \right) \, ds \right\} \, dr
 = f(x) + tLf(x) + \frac{t^2}{2}L^2 f(x) + o(t^2);
 \]
Smooth moment functions (Dynkin’s formula)

- **Infinitesimal Generator:** For \(f \in C^2_b(\mathbb{R}) \), let
 \[
 Lf(x) = b(x)f'(x) + \frac{\sigma^2(x)}{2}f''(x) + \int_\mathbb{R} \{f(x + \gamma(x, z)) - f(x)\} \lambda(x)g(z; x)\,dz;
 \]

- **Key Property:**
 \[
 \lim_{t \to 0} \frac{\mathbb{E}[f(X_t)] - f(x)}{t} = Lf(x) \iff \beta_t(f) := \mathbb{E}[f(X_t)] = f(x) + tLf(x) + o(t).
 \]

- **Dynkin’s formula:**
 \[
 \mathbb{E}[f(X_t)] = f(x) + \int_0^t \mathbb{E}[Lf(X_r)]\,dr = f(x) + tLf(x) + o(t) \quad \text{ (since }Lf \in C^1_b(\mathbb{R}));
 \]

- **Implication:** If \(Lf \in C^2_b \),
 \[
 \mathbb{E}[f(X_t)] = f(x) + \int_0^t \mathbb{E}[Lf(X_r)]\,dr = f(x) + \int_0^t \left\{Lf(x) + \int_0^r \mathbb{E}\left[(L^2f)(X_s)\right]ds\right\}\,dr = f(x) + tLf(x) + \frac{t^2}{2}L^2f(x) + o(t^2);
 \]
Smooth moment functions (Dynkin’s formula)

- **Infinitesimal Generator:** For $f \in C^2_b(\mathbb{R})$, let
 \[
 Lf(x) = b(x)f'(x) + \frac{\sigma^2(x)}{2}f''(x) + \int_{\mathbb{R}} \{f(x + \gamma(x, z)) - f(x)\} \lambda(x)g(z; x) \, dz;
 \]

- **Key Property:**
 \[
 \lim_{t \to 0} \frac{\mathbb{E}[f(X_t)] - f(x)}{t} = Lf(x) \iff \beta_t(f) := \mathbb{E}[f(X_t)] = f(x) + tLf(x) + o(t).
 \]

- **Dynkin’s formula:**
 \[
 \mathbb{E}[f(X_t)] = f(x) + \int_0^t \mathbb{E}[Lf(X_r)] \, dr = f(x) + tLf(x) + o(t) \quad \text{(since } Lf \in C_b(\mathbb{R})));
 \]

- **Implication:** If $Lf \in C^2_b$,
 \[
 \mathbb{E}[f(X_t)] = f(x) + \int_0^t \mathbb{E}[Lf(X_r)] \, dr = f(x) + tLf(x) + o(t^2).
 \]
Smooth moment functions (Dynkin’s formula)

- **Infinitesimal Generator**: For $f \in C_0^2(\mathbb{R})$, let
 \[
 Lf(x) = b(x)f'(x) + \frac{\sigma^2(x)}{2}f''(x) + \int_{\mathbb{R}} \left\{ f(x + \gamma(x, z)) - f(x) \right\} \lambda(x)g(z; x) dz;
 \]

- **Key Property**:
 \[
 \lim_{t \to 0} \frac{\mathbb{E}[f(X_t)] - f(x)}{t} = Lf(x) \iff \beta_t(f) := \mathbb{E}[f(X_t)] = f(x) + tLf(x) + o(t).
 \]

- **Dynkin’s formula**:
 \[
 \mathbb{E}[f(X_t)] = f(x) + \int_0^t \mathbb{E}[Lf(X_r)] \, dr = f(x) + tLf(x) + o(t) \quad \text{(since } Lf \in C_b(\mathbb{R}));
 \]

- **Implication**: If $Lf \in C_b^2$,
 \[
 \mathbb{E}[f(X_t)] = f(x) + \int_0^t \mathbb{E}[Lf(X_r)] \, dr
 = f(x) + \int_0^t \left\{ Lf(x) + \int_0^r \mathbb{E}\left[(L^2f)(X_s) \right] \, ds \right\} \, dr
 = f(x) + tLf(x) + \frac{t^2}{2} L^2f(x) + o(t^2);
 \]
Is $f \in C_0^2(\mathbb{R})$ necessary? No... if f vanishes around x and is bounded;

Idea:

- Consider a simple jump-diffusion $\gamma(x, z) = z$:

\[
dX_t = b(X_t) \, dt + \sigma(X_t) \, dW_t + J_t \, dN_t \implies X_t = x + \int_0^t b(X_s) \, ds + \int_0^t \sigma(X_s) \, dW_s + \sum_{i=1}^{N_t} J_i,
\]

- Conditioning on $N_t \sim \text{Poisson}(\lambda t)$:

\[
\mathbb{E} [f(X_t)] = e^{-\lambda t} \mathbb{E} [f(X_t) | N_t = 0] + e^{-\lambda t} \mathbb{E} [f(X_t) | N_t = 1] \lambda t + e^{-\lambda t} \mathbb{E} [f(X_t) | N_t = 2] \frac{(\lambda t)^2}{2}
\]

- Let $d\bar{X}_t = b(\bar{X}_t) \, dt + \sigma(\bar{X}_t) \, dW_t$, $\bar{X}_0 = x$;

\[
\mathbb{E} [f(X_t) | N_t = 0] = \mathbb{E} [f(\bar{X}_t)] + o(t^k), \text{ for any } k \geq 0;
\]

\[
\mathbb{E} [f(X_t) | N_t = 1] = \mathbb{E} [f(\bar{X}_t + J_1)] = \mathbb{E} [\mathbb{E} [f(\bar{X}_t + J_1) | \bar{X}_t]] = \mathbb{E} [F(\bar{X}_t)],
\]

\[F(x) := \mathbb{E} [f(\bar{X}_t + J_1) | \bar{X}_t = x] = \mathbb{E} [f(x + J_1)] = f(x)g(x)dx, \]

which equals $f(x)g(x-x)dx$ and, thus, is bounded and smooth whenever g is smooth enough;

- In particular, $\mathbb{E} [f(X_t) | N_t = 1] = F(x) + (LF)(x)t + O(t^2)$

\[
\mathbb{E} [f(X_t) | N_t = 2] = \mathbb{E} [f(\bar{X}_t + J_1 + J_2)] = \mathbb{E} [f(x + J_1 + J_2)] + O(t)
\]

\[
\mathbb{E} [f(X_t) | N_t = 3] = \mathbb{E} [f(\bar{X}_t + J_1 + J_2 + J_3)] = \mathbb{E} [f(x + J_1 + J_2 + J_3)] + O(t^2)
\]
Is \(f \in C^2_0(\mathbb{R}) \) necessary? No... if \(f \) vanishes around \(x \) and is bounded;

Idea:

- Consider a simple jump-diffusion \(\gamma(x, z) = z \):

\[
dX_t = b(X_t) \, dt + \sigma(X_t) \, dW_t + J_t \, dN_t \implies X_t = x + \int_0^t b(X_s) \, ds + \int_0^t \sigma(X_s) \, dW_s + \sum_{i=1}^{N_t} J_i,
\]

- Conditioning on \(N_t \sim \text{Poisson}(\lambda t) \):

\[
\mathbb{E}[f(X_t)] = e^{-\lambda t} \mathbb{E}[f(X_t) \mid N_t = 0] + e^{-\lambda t} \mathbb{E}[f(X_t) \mid N_t = 1] \lambda t + e^{-\lambda t} \mathbb{E}[f(X_t) \mid N_t = 2] \frac{(\lambda t)}{2}
\]

- Let \(d\bar{X}_t = b(\bar{X}_t) \, dt + \sigma(\bar{X}_t) \, dW_t, \quad \bar{X}_0 = x; \)

\[
\mathbb{E}[f(X_t) \mid N_t = 0] = \mathbb{E}[f(\bar{X}_t)] = o(t^k), \text{ for any } k \geq 0;
\]

\[
\mathbb{E}[f(X_t) \mid N_t = 1] = \mathbb{E}[f(\bar{X}_t + J_1)] = \mathbb{E}[\mathbb{E}[f(\bar{X}_t + J_1) \mid \bar{X}_t]] = \mathbb{E}[F(\bar{X}_t)],
\]

where \(F(x) := \mathbb{E}[f(\bar{X}_t + J_1) \mid \bar{X}_t = x] = \mathbb{E}[f(x + J_1)] = \int f(x + z)g(z) \, dz \), which equals \(f(t)g(t,x) \) \(dx \) and, thus, is bounded and smooth whenever \(g \) is smooth enough;

- In particular, \(\mathbb{E}[f(X_t) \mid N_t = 1] = F(x) + (LF)(x)t + O(t^2) \)

\[
\mathbb{E}[f(X_t) \mid N_t = 2] = \mathbb{E}[f(\bar{X}_t + J_1 + J_2)] = \mathbb{E}[f(x + J_1 + J_2)] + O(t)
\]
Regularization by smooth jump densities

1. Is \(f \in C^2_b(\mathbb{R}) \) necessary? No... if \(f \) vanishes around \(x \) and is bounded;

2. Idea:
 - Consider a simple jump-diffusion \(\gamma(x, z) = z \):
 \[
dX_t = b(X_t) \, dt + \sigma(X_t) \, dW_t + J_t \, dN_t \implies X_t = x + \int_0^t b(X_s) \, ds + \int_0^t \sigma(X_s) \, dW_s + \sum_{i=1}^{N_t} J_i,
\]
 - Conditioning on \(N_t \sim \text{Poisson}(\lambda t) \):
 \[
 \mathbb{E}[f(X_t)] = e^{-\lambda t} \mathbb{E}[f(X_t) | N_t = 0] + e^{-\lambda t} \mathbb{E}[f(X_t) | N_t = 1] \lambda t + e^{-\lambda t} \mathbb{E}[f(X_t) | N_t = 2] \frac{\lambda t}{2}
 \]
 - Let \(d\tilde{X}_t = b(\tilde{X}_t) \, dt + \sigma(\tilde{X}_t) \, dW_t, \quad \tilde{X}_0 = x \);
 - \(\mathbb{E}[f(X_t) | N_t = 0] = \mathbb{E}[f(\tilde{X}_t)] = o(t^k) \), for any \(k \geq 0 \);
 - \(\mathbb{E}[f(X_t) | N_t = 1] = \mathbb{E}[f(\tilde{X}_t + J_1)] = \mathbb{E}[\mathbb{E}[f(\tilde{X}_t + J_1) | \tilde{X}_t]] = \mathbb{E}[F(\tilde{X}_t)] \), where
 \[
 F(x) := \mathbb{E}[f(\tilde{X}_t + J_1) | \tilde{X}_t = x] = \mathbb{E}[f(x + J_1)] = \int f(x + z) g(z) \, dz,
 \]
 which equals \(\int f(u) g(u - x) \, du \) and, thus, is bounded and smooth whenever \(g \) is smooth enough;
 - In particular, \(\mathbb{E}[f(X_t) | N_t = 1] = F(x) + (LF)(x) t + O(t^2) \)
 - \(\mathbb{E}[f(X_t) | N_t = 2] = \mathbb{E}[f(\tilde{X}_t + J_1 + J_2)] = \mathbb{E}[f(x + J_1 + J_2)] + O(t) \)
Is $f \in C^2_b(\mathbb{R})$ necessary? No... if f vanishes around x and is bounded;

Idea:

- Consider a simple jump-diffusion $\gamma(x, z) = z$:

$$dX_t = b(X_t) dt + \sigma(X_t) dW_t + J_t dN_t \implies X_t = x + \int_0^t b(X_s) ds + \int_0^t \sigma(X_s) dW_s + \sum_{i=1}^{N_t} J_i,$$

- Conditioning on $N_t \sim \text{Poisson}(\lambda t)$:

$$\mathbb{E}[f(X_t)] = e^{-\lambda t}\mathbb{E}[f(X_t) | N_t = 0] + e^{-\lambda t}\mathbb{E}[f(X_t) | N_t = 1] \lambda t + e^{-\lambda t}\mathbb{E}[f(X_t) | N_t = 2]\frac{(\lambda t)^2}{2}$$

- Let $d\bar{X}_t = b(\bar{X}_t) dt + \sigma(\bar{X}_t) dW_t$, $\bar{X}_0 = x$;

- $\mathbb{E}[f(X_t) | N_t = 0] = \mathbb{E}[f(\bar{X}_t)] = o(t^k)$, for any $k \geq 0$;

- $\mathbb{E}[f(X_t) | N_t = 1] = \mathbb{E}[f(\bar{X}_t + J_1)] = \mathbb{E}[\mathbb{E}[f(\bar{X}_t + J_1) | \bar{X}_t]] = \mathbb{E}[F(\bar{X}_t)]$, where

$$F(x) := \mathbb{E}[f(\bar{X}_t + J_1) | \bar{X}_t = x] = \mathbb{E}[f(x + J_1)] = \int f(x + z)g(z)dz,$$

which equals $\int f(u)g(u - x)du$ and, thus, is bounded and smooth whenever g is smooth enough;

- In particular, $\mathbb{E}[f(X_t) | N_t = 1] = F(x) + (LF)(x)t + O(t^2)$

- $\mathbb{E}[f(X_t) | N_t = 2] = \mathbb{E}[f(\bar{X}_t + J_1 + J_2)] = \mathbb{E}[f(x + J_1 + J_2)] + O(t)$
1 Is $f \in C^2_b(\mathbb{R})$ necessary? No... if f vanishes around x and is bounded;

2 Idea:
 • Consider a simple jump-diffusion $\gamma(x, z) = z$:
 $$dX_t = b(X_t)\, dt + \sigma(X_t)\, dW_t + J_t\, dN_t \implies X_t = x + \int_0^t b(X_s)\, ds + \int_0^t \sigma(X_s)\, dW_s + \sum_{i=1}^{N_t} J_i,$$
 • Conditioning on $N_t \sim \text{Poisson}(\lambda t)$:
 $$\mathbb{E}[f(X_t)] = e^{-\lambda t} \mathbb{E}[f(X_t) | N_t = 0] + e^{-\lambda t} \mathbb{E}[f(X_t) | N_t = 1] \lambda t + e^{-\lambda t} \mathbb{E}[f(X_t) | N_t = 2] \frac{(\lambda t)^2}{2},$$
 Let $d\bar{X}_t = b(\bar{X}_t)\, dt + \sigma(\bar{X}_t)\, dW_t, \quad \bar{X}_0 = x$;
 $$\mathbb{E}[f(X_t) | N_t = 0] = \mathbb{E}[f(\bar{X}_t)] = o(t^k), \text{ for any } k \geq 0;$$
 $$\mathbb{E}[f(X_t) | N_t = 1] = \mathbb{E}[f(\bar{X}_t + J_1)] = \mathbb{E}[\mathbb{E}[f(\bar{X}_t + J_1) | \bar{X}_t]] = \mathbb{E}[F(\bar{X}_t)],$$
 where $F(x) := \mathbb{E}[f(\bar{X}_t + J_1) | \bar{X}_t = x] = \mathbb{E}[f(x + J_1)] = \int f(x + z)g(z)\, dz$,
 which equals $\int f(u)g(u - x)\, du$ and, thus, is bounded and smooth whenever g is smooth enough;
 • In particular, $\mathbb{E}[f(X_t) | N_t = 1] = F(x) + (LF)(x)t + O(t^2)$
 $$\mathbb{E}[f(X_t) | N_t = 2] = \mathbb{E}[f(\bar{X}_t + J_1 + J_2)] = \mathbb{E}[f(x + J_1 + J_2)] + O(t)$$
Is \(f \in C_0^2(\mathbb{R}) \) necessary? No... if \(f \) vanishes around \(x \) and is bounded;

Idea:

- Consider a simple jump-diffusion \(\gamma(x, z) = z \):

\[
dX_t = b(X_t) \, dt + \sigma(X_t) \, dW_t + J_t \, dN_t \quad \Rightarrow \quad X_t = x + \int_0^t b(X_s) \, ds + \int_0^t \sigma(X_s) \, dW_s + \sum_{i=1}^{N_t} J_i,
\]

- Conditioning on \(N_t \sim \text{Poisson}(\lambda t) \):

\[
\mathbb{E}[f(X_t)] = e^{-\lambda t} \mathbb{E}[f(X_t) | N_t = 0] + e^{-\lambda t} \mathbb{E}[f(X_t) | N_t = 1] \lambda t + e^{-\lambda t} \mathbb{E}[f(X_t) | N_t = 2] \frac{(\lambda t)^2}{2}
\]

- Let \(d\bar{X}_t = b(\bar{X}_t) \, dt + \sigma(\bar{X}_t) \, dW_t \), \(\bar{X}_0 = x \);

\[
\mathbb{E}[f(X_t) | N_t = 0] = \mathbb{E}[f(\bar{X}_t)] = o(t^k), \text{ for any } k \geq 0;
\]

\[
\mathbb{E}[f(X_t) | N_t = 1] = \mathbb{E}[f(\bar{X}_t + J_1)] = \mathbb{E}[\mathbb{E}[f(\bar{X}_t + J_1) | \bar{X}_t]] = \mathbb{E}[F(\bar{X}_t)], \text{ where}
\]

\[F(x) := \mathbb{E}[f(\bar{X}_t + J_1) | \bar{X}_t = x] = \mathbb{E}[f(x + J_1)] = \int f(x + z) g(z) \, dz,
\]

which equals \(\int f(u) g(u - x) \, du \) and, thus, is bounded and smooth whenever \(g \) is smooth enough;

- In particular, \(\mathbb{E}[f(X_t) | N_t = 1] = F(x) + (LF)(x)t + O(t^2) \)

\[
\mathbb{E}[f(X_t) | N_t = 2] = \mathbb{E}[f(\bar{X}_t + J_1 + J_2)] = \mathbb{E}[f(x + J_1 + J_2)] + O(t)
\]
Regularization by smooth jump densities

1. Is \(f \in C^2_b(\mathbb{R}) \) necessary? No... if \(f \) vanishes around \(x \) and is bounded;

2. Idea:
 - Consider a simple jump-diffusion \(\gamma(x, z) = z \):
 \[
dX_t = b(X_t) \, dt + \sigma(X_t) \, dW_t + J_t \, dN_t \implies X_t = x + \int_0^t b(X_s) \, ds + \int_0^t \sigma(X_s) \, dW_s + \sum_{i=1}^{N_t} J_i,
\]
 - Conditioning on \(N_t \sim \text{Poisson}(\lambda t) \):
 \[
 \mathbb{E} [f(X_t)] = e^{-\lambda t} \mathbb{E} [f(X_t) | N_t = 0] + e^{-\lambda t} \mathbb{E} [f(X_t) | N_t = 1] \lambda t + e^{-\lambda t} \mathbb{E} [f(X_t) | N_t = 2] \frac{(\lambda t)^2}{2}
 \]
 - Let \(d\bar{X}_t = b(\bar{X}_t) \, dt + \sigma(\bar{X}_t) \, dW_t, \quad \bar{X}_0 = x \);
 - \(\mathbb{E} [f(X_t) | N_t = 0] = \mathbb{E} [f(\bar{X}_t)] = o(t^k) \), for any \(k \geq 0 \);
 - \(\mathbb{E} [f(X_t) | N_t = 1] = \mathbb{E} [f(\bar{X}_t + J_1)] = \mathbb{E} [\mathbb{E} [f(\bar{X}_t + J_1) | \bar{X}_t]] = \mathbb{E} [F(\bar{X}_t)] \), where
 \(F(x) := \mathbb{E} [f(\bar{X}_t + J_1) | \bar{X}_t = x] = \mathbb{E} [f(x + J_1)] = \int f(x + z)g(z) \, dz \),
 which equals \(\int f(u)g(u - x) \, du \) and, thus, is bounded and smooth whenever \(g \) is smooth enough;
 - In particular, \(\mathbb{E} [f(X_t) | N_t = 1] = F(x) + (LF)(x)t + O(t^2) \)
 - \(\mathbb{E} [f(X_t) | N_t = 2] = \mathbb{E} [f(\bar{X}_t + J_1 + J_2)] = \mathbb{E} [f(x + J_1 + J_2)] + O(t) \).
1. Is $f \in C^2_b(\mathbb{R})$ necessary? No... if f vanishes around x and is bounded;

2. Idea:

- Consider a simple jump-diffusion $\gamma(x, z) = z$:

 $$dX_t = b(X_t) \, dt + \sigma(X_t) \, dW_t + J_t \, dN_t \implies X_t = x + \int_0^t b(X_s) \, ds + \int_0^t \sigma(X_s) \, dW_s + \sum_{i=1}^{N_t} J_i,$$

- Conditioning on $N_t \sim \text{Poisson}(\lambda t)$:

 $$\mathbb{E}[f(X_t)] = e^{-\lambda t} \mathbb{E}[f(X_t) | N_t = 0] + e^{-\lambda t} \mathbb{E}[f(X_t) | N_t = 1] \lambda t + e^{-\lambda t} \mathbb{E}[f(X_t) | N_t = 2] \frac{(\lambda t)^2}{2},$$

- Let $d\tilde{X}_t = b(\tilde{X}_t) \, dt + \sigma(\tilde{X}_t) \, dW_t, \quad \tilde{X}_0 = x$;

- $\mathbb{E}[f(X_t) | N_t = 0] = \mathbb{E}[f(\tilde{X}_t)] = o(t^k)$, for any $k \geq 0$;

- $\mathbb{E}[f(X_t) | N_t = 1] = \mathbb{E}[f(\tilde{X}_t + J_1)] = \mathbb{E}[\mathbb{E}[f(\tilde{X}_t + J_1) | \tilde{X}_t]] = \mathbb{E}[F(\tilde{X}_t)]$, where

 $$F(x) := \mathbb{E}[f(\tilde{X}_t + J_1) | \tilde{X}_t = x] = \mathbb{E}[f(x + J_1)] = \int f(x + z)g(z) \, dz,$$

 which equals $\int f(u)g(u - x) \, du$ and, thus, is bounded and smooth whenever g is smooth enough;

- In particular, $\mathbb{E}[f(X_t) | N_t = 1] = F(x) + (LF)(x)t + O(t^2)$

- $\mathbb{E}[f(X_t) | N_t = 2] = \mathbb{E}[f(\tilde{X}_t + J_1 + J_2)] = \mathbb{E}[f(x + J_1 + J_2)] + O(t)$
Regularization by smooth jump densities

1 Is \(f \in C^2_0(\mathbb{R}) \) necessary? No... if \(f \) vanishes around \(x \) and is bounded;

2 Idea:

 - Consider a simple jump-diffusion \(\gamma(x, z) = z \):
 \[
 dX_t = b(X_t)\,dt + \sigma(X_t)\,dW_t + J_t\,dN_t \quad \implies \quad X_t = x + \int_0^t b(X_s)\,ds + \int_0^t \sigma(X_s)\,dW_s + \sum_{i=1}^{N_t} J_i,
 \]

 - Conditioning on \(N_t \sim \text{Poisson}(\lambda t) \):
 \[
 \mathbb{E}[f(X_t)] = e^{-\lambda t}\mathbb{E}[f(X_t) \mid N_t = 0] + e^{-\lambda t}\mathbb{E}[f(X_t) \mid N_t = 1] \lambda t + e^{-\lambda t}\mathbb{E}[f(X_t) \mid N_t = 2] \left(\frac{\lambda t}{2}\right)
 \]

 - Let \(d\bar{X}_t = b(\bar{X}_t)\,dt + \sigma(\bar{X}_t)\,dW_t, \quad \bar{X}_0 = x \);

 - Conditioning on \(N_t \sim \text{Poisson}(\lambda t) \):
 \[
 \mathbb{E}[f(X_t)] = e^{-\lambda t}\mathbb{E}[f(X_t) \mid N_t = 0] + e^{-\lambda t}\mathbb{E}[f(X_t) \mid N_t = 1] \lambda t + e^{-\lambda t}\mathbb{E}[f(X_t) \mid N_t = 2] \left(\frac{\lambda t}{2}\right)
 \]

 - Let \(d\bar{X}_t = b(\bar{X}_t)\,dt + \sigma(\bar{X}_t)\,dW_t, \quad \bar{X}_0 = x \);

 - Conditioning on \(N_t \sim \text{Poisson}(\lambda t) \):
 \[
 \mathbb{E}[f(X_t)] = e^{-\lambda t}\mathbb{E}[f(X_t) \mid N_t = 0] + e^{-\lambda t}\mathbb{E}[f(X_t) \mid N_t = 1] \lambda t + e^{-\lambda t}\mathbb{E}[f(X_t) \mid N_t = 2] \left(\frac{\lambda t}{2}\right)
 \]

 - Let \(d\bar{X}_t = b(\bar{X}_t)\,dt + \sigma(\bar{X}_t)\,dW_t, \quad \bar{X}_0 = x \);

 - Conditioning on \(N_t \sim \text{Poisson}(\lambda t) \):
 \[
 \mathbb{E}[f(X_t)] = e^{-\lambda t}\mathbb{E}[f(X_t) \mid N_t = 0] + e^{-\lambda t}\mathbb{E}[f(X_t) \mid N_t = 1] \lambda t + e^{-\lambda t}\mathbb{E}[f(X_t) \mid N_t = 2] \left(\frac{\lambda t}{2}\right)
 \]

 - In particular, \(\mathbb{E}[f(X_t) \mid N_t = 1] = F(x) + (LF)(x)t + O(t^2) \)

 - In particular, \(\mathbb{E}[f(X_t) \mid N_t = 1] = F(x) + (LF)(x)t + O(t^2) \)

 - In particular, \(\mathbb{E}[f(X_t) \mid N_t = 1] = F(x) + (LF)(x)t + O(t^2) \)

 - In particular, \(\mathbb{E}[f(X_t) \mid N_t = 1] = F(x) + (LF)(x)t + O(t^2) \)

 - In particular, \(\mathbb{E}[f(X_t) \mid N_t = 1] = F(x) + (LF)(x)t + O(t^2) \)
Is \(f \in C^2_b(\mathbb{R}) \) necessary? No... if \(f \) vanishes around \(x \) and is bounded;

Idea:

1. Consider a simple jump-diffusion \(\gamma(x, z) = z \):
 \[
 dX_t = b(X_t) \, dt + \sigma(X_t) \, dW_t + J_t \, dN_t \quad \Rightarrow \quad X_t = x + \int_0^t b(X_s) \, ds + \int_0^t \sigma(X_s) \, dW_s + \sum_{i=1}^{N_t} J_i,
 \]

2. Conditioning on \(N_t \sim \text{Poisson}(\lambda t) \):
 \[
 \mathbb{E}[f(X_t)] = e^{-\lambda t} \mathbb{E}[f(X_t) | N_t = 0] + e^{-\lambda t} \mathbb{E}[f(X_t) | N_t = 1] \lambda t + e^{-\lambda t} \mathbb{E}[f(X_t) | N_t = 2] \frac{(\lambda t)^2}{2}
 \]

3. Let \(d\bar{X}_t = b(\bar{X}_t) \, dt + \sigma(\bar{X}_t) \, dW_t, \quad \bar{X}_0 = x \);

4. \(\mathbb{E}[f(X_t) | N_t = 0] = \mathbb{E}[f(\bar{X}_t)] = o(t^k) \), for any \(k \geq 0 \);

5. \(\mathbb{E}[f(X_t) | N_t = 1] = \mathbb{E}[f(\bar{X}_t + J_1)] = \mathbb{E}[\mathbb{E}[f(\bar{X}_t + J_1) | \bar{X}_t]] = \mathbb{E}[F(\bar{X}_t)] \), where

 \[
 F(x) := \mathbb{E}[f(\bar{X}_t + J_1) | \bar{X}_t = x] = \mathbb{E}[f(x + J_1)] = \int f(x + z)g(z)dz,
 \]

 which equals \(\int f(u)g(u - x)du \) and, thus, is bounded and smooth whenever \(g \) is smooth enough;

6. In particular, \(\mathbb{E}[f(X_t) | N_t = 1] = F(x) + (LF)(x)t + O(t^2) \)

7. \(\mathbb{E}[f(X_t) | N_t = 2] = \mathbb{E}[f(\bar{X}_t + J_1 + J_2)] = \mathbb{E}[f(x + J_1 + J_2)] + O(t) \)
Regularization by smooth jump densities

1. Is \(f \in C^2_b(\mathbb{R}) \) necessary? No... if \(f \) vanishes around \(x \) and is bounded;

2. Idea:

 - Consider a simple jump-diffusion \(\gamma(x, z) = z \):
 \[
 dX_t = b(X_t) \, dt + \sigma(X_t) \, dW_t + J_t \, dN_t \quad \implies \quad X_t = x + \int_0^t b(X_s) \, ds + \int_0^t \sigma(X_s) \, dW_s + \sum_{i=1}^{N_t} J_i,
 \]

 - Conditioning on \(N_t \sim \text{Poisson}(\lambda t) \):
 \[
 \mathbb{E} [f(X_t)] = e^{-\lambda t} \mathbb{E} [f(X_t) \mid N_t = 0] + e^{-\lambda t} \mathbb{E} [f(X_t) \mid N_t = 1] \lambda t + e^{-\lambda t} \mathbb{E} [f(X_t) \mid N_t = 2] \frac{(\lambda t)^2}{2}
 \]

 - Let \(d\bar{X}_t = b(\bar{X}_t) \, dt + \sigma(\bar{X}_t) \, dW_t \), \(\bar{X}_0 = x \):

 - \(\mathbb{E} [f(X_t) \mid N_t = 0] = \mathbb{E} [f(\bar{X}_t)] = o(t^k) \), for any \(k \geq 0 \);

 - \(\mathbb{E} [f(X_t) \mid N_t = 1] = \mathbb{E} [f(\bar{X}_t + J_1)] = \mathbb{E} \left[\mathbb{E} \left[f(\bar{X}_t + J_1) \mid \bar{X}_t \right] \right] = \mathbb{E} [F(\bar{X}_t)], \) where
 \[
 F(x) := \mathbb{E} \left[f(\bar{X}_t + J_1) \mid \bar{X}_t = x \right] = \mathbb{E} [f(x + J_1)] = \int f(x + z) g(z) \, dz,
 \]
 which equals \(\int f(u) g(u - x) \, du \) and, thus, is bounded and smooth whenever \(g \) is smooth enough;

 - In particular, \(\mathbb{E} [f(X_t) \mid N_t = 1] = F(x) + (LF)(x) t + O(t^2) \)

 - \(\mathbb{E} [f(X_t) \mid N_t = 2] = \mathbb{E} [f(\bar{X}_t + J_1 + J_2)] = \mathbb{E} [f(x + J_1 + J_2)] + O(t) \)
The Result

1 2nd Order Expansion (F-L & Houdré, 2009):

\[
\mathbb{E}[f(X_t)] = \lambda t \mathbb{E}[f(x + J_1)] + \frac{t^2}{2} \left(\lambda^2 \mathbb{E}[f(x + J_1 + J_2)] - 2\lambda^2 \mathbb{E}[f(x + J_1)] + 2\lambda LF(x) \right) + \ldots
\]

2 Consequences:

- The leading order term depends only on the jump component;
- What is the contribution of the drift \(b \) to the moment?
 \[
t^2 \lambda b(x) F'(x) = -t^2 \lambda b(x) \int f(u) g'(u - x) du.
\]
- What is the contribution of \(\sigma \) to the moment?
 \[
t^2 \frac{\lambda \sigma^2(x)}{2} F''(x) = \frac{t^2}{2} \lambda \sigma^2(x) \int f(u) g''(u - x) du.
\]

3 Is the smoothness of \(g \) necessary? Yes... There are counterexamples for \(g \)'s that are not differentiable.

4 Does \(f \) have to vanish in a neighborhood of \(x \)? No... it suffices that \(f \) is \(C^2 \) in a neighborhood of \(x \):

\[
\mathbb{E}[f(X_t) | N_t = 0] = \mathbb{E}[f(\bar{X}_t)] = f(x) + t(\bar{L}f)(x) + \frac{t^2}{2} (\bar{L}^2 f)(x) + \ldots
\]

where \(\bar{L}f(x) = b(x)f'(x) + \frac{\sigma^2(x)}{2} f''(x) \).
The Result

1. **2nd Order Expansion (F-L & Houdré, 2009):**

\[
\mathbb{E}[f(X_t)] = \lambda t \mathbb{E}[f(x + J_1)] + \frac{t^2}{2} (\lambda^2 \mathbb{E}[f(x + J_1 + J_2)] - 2\lambda^2 \mathbb{E}[f(x + J_1)] + 2\lambda LF(x)) + \ldots
\]

2. **Consequences:**

 - The leading order term depends only on the jump component;
 - What is the contribution of the drift \(b\) to the moment?
 \[
t^2 \lambda b(x) F'(x) = -t^2 \lambda b(x) \int f(u)g'(u - x)du.
 \]
 - What is the contribution of \(\sigma\) to the moment?
 \[
 \frac{t^2}{2} \lambda \sigma^2(x) F''(x) = \frac{t^2}{2} \lambda \sigma^2(x) \int f(u)g''(u - x)du.
 \]

3. Is the smoothness of \(g\) necessary? Yes... There are counterexamples for \(g\)'s that are not differentiable.

4. Does \(f\) have to vanish in a neighborhood of \(x\)? No... it suffices that \(f\) is \(C^2\) in a neighborhood of \(x\):

\[
\mathbb{E}[f(X_t) \mid N_t = 0] = \mathbb{E}[f(\bar{X}_t)] = f(x) + t(\bar{L}f)(x) + \frac{t^2}{2}(\bar{L}^2 f)(x) + \ldots
\]

where \(\bar{L}f(x) = b(x)f'(x) + \frac{\sigma^2(x)}{2}f''(x)\).
The Result

1. 2nd Order Expansion (F-L & Houdré, 2009):

 \[\mathbb{E} [f(X_t)] = \lambda t \mathbb{E} [f(x + J_1)] + \frac{t^2}{2} (\lambda^2 \mathbb{E} [f(x + J_1 + J_2)] - 2\lambda^2 \mathbb{E} [f(x + J_1)] + 2\lambda LF(x)) + \ldots \]

2. Consequences:

 - The leading order term depends only on the jump component;
 - What is the contribution of the drift \(b \) to the moment?
 \[t^2 \lambda b(x) F'(x) = -t^2 \lambda b(x) \int f(u)g'(u - x)du. \]
 - What is the contribution of \(\sigma \) to the moment?
 \[\frac{t^2}{2} \lambda \sigma^2(x) F''(x) = \frac{t^2}{2} \lambda \sigma^2(x) \int f(u)g''(u - x)du. \]

3. Is the smoothness of \(g \) necessary? Yes... There are counterexamples for \(g \)'s that are not differentiable.

4. Does \(f \) have to vanish in a neighborhood of \(x \)? No... it suffices that \(f \) is \(C^2 \) in a neighborhood of \(x \):

 \[\mathbb{E} [f(X_t) | N_t = 0] = \mathbb{E} [f(\bar{X}_t)] = f(x) + t(\bar{L}f)(x) + \frac{t^2}{2} (\bar{L}^2 f)(x) + \ldots \]

 where \(\bar{L}f(x) = b(x)f'(x) + \frac{\sigma^2(x)}{2} f''(x). \)
The Result

1. 2nd Order Expansion (F-L & Houdré, 2009):

\[
\mathbb{E}[f(X_t)] = \lambda t \mathbb{E}[f(x + J_1)] + \frac{t^2}{2} (\lambda^2 \mathbb{E}[f(x + J_1 + J_2)] - 2\lambda^2 \mathbb{E}[f(x + J_1)] + 2\lambda LF(x)) + \ldots
\]

2. Consequences:

- The leading order term depends only on the jump component;
- What is the contribution of the drift \(b \) to the moment?

 \[
t^2 \lambda b(x) F'(x) = -t^2 \lambda b(x) \int f(u) g'(u - x) du.
 \]
- What is the contribution of \(\sigma \) to the moment?

 \[
 \frac{t^2}{2} \lambda \sigma^2(x) F''(x) = \frac{t^2}{2} \lambda \sigma^2(x) \int f(u) g''(u - x) du.
 \]

3. Is the smoothness of \(g \) necessary? Yes... There are counterexamples for \(g \)'s that are not differentiable.

4. Does \(f \) have to vanish in a neighborhood of \(x \)? No... it suffices that \(f \) is \(C^2 \) in a neighborhood of \(x \):

\[
\mathbb{E}[f(X_t) | N_t = 0] = \mathbb{E}[f(\bar{X}_t)] = f(x) + t(\bar{L}f)(x) + \frac{t^2}{2}(\bar{L}^2 f)(x) + \ldots
\]

where \(\bar{L}f(x) = b(x)f'(x) + \frac{\sigma^2(x)}{2} f''(x) \).
The Result

1 **2nd Order Expansion (F-L & Houdré, 2009):**

\[
\mathbb{E}[f(X_t)] = \lambda t \mathbb{E}[f(x + J_1)] + \frac{t^2}{2} \left(\lambda^2 \mathbb{E}[f(x + J_1 + J_2)] - 2\lambda^2 \mathbb{E}[f(x + J_1)] + 2\lambda LF(x) \right) + \ldots
\]

2 **Consequences:**

- The leading order term depends only on the jump component;
- What is the contribution of the drift \(b\) to the moment?
 \[
t^2 \lambda b(x) F'(x) = -t^2 \lambda b(x) \int f(u)g'(u-x)du.
\]
- What is the contribution of \(\sigma\) to the moment?
 \[
 \frac{t^2}{2} \lambda \sigma^2(x) F''(x) = \frac{t^2}{2} \lambda \sigma^2(x) \int f(u)g''(u-x)du.
 \]

3 **Is the smoothness of \(g\) necessary?** Yes... There are counterexamples for \(g\)'s that are not differentiable.

4 **Does \(f\) have to vanish in a neighborhood of \(x\)?** No... it suffices that \(f\) is \(C^2\) in a neighborhood of \(x\):

\[
\mathbb{E}[f(X_t) | N_t = 0] = \mathbb{E}[f(\bar{X}_t)] = f(x) + t(\bar{L}f)(x) + \frac{t^2}{2}(\bar{L}^2 f)(x) + \ldots
\]

where \(\bar{L}f(x) = b(x)f'(x) + \frac{\sigma^2(x)}{2}f''(x)\).
The Result

1. 2nd Order Expansion (F-L & Houdré, 2009):

\[
\mathbb{E}[f(X_t)] = \lambda t \mathbb{E}[f(x + J)] + \frac{t^2}{2} \left(\lambda^2 \mathbb{E}[f(x + J_1 + J_2)] - 2\lambda^2 \mathbb{E}[f(x + J_1)] + 2\lambda LF(x) \right) + \ldots
\]

2. Consequences:
 - The leading order term depends only on the jump component;
 - What is the contribution of the drift \(b \) to the moment?
 \[
t^2 \lambda b(x) F'(x) = -t^2 \lambda b(x) \int f(u) g'(u - x) du.
\]
 - What is the contribution of \(\sigma \) to the moment?
 \[
 \frac{t^2}{2} \lambda \sigma^2(x) F''(x) = \frac{t^2}{2} \lambda \sigma^2(x) \int f(u) g''(u - x) du.
 \]

3. Is the smoothness of \(g \) necessary? Yes... There are counterexamples for \(g \)'s that are not differentiable.

4. Does \(f \) have to vanish in a neighborhood of \(x \)? No... it suffices that \(f \) is \(C^2 \) in a neighborhood of \(x \):

\[
\mathbb{E}[f(X_t) | N_t = 0] = \mathbb{E}[f(\bar{X}_t)] = f(x) + t(\bar{L}f)(x) + \frac{t^2}{2}(\bar{L}^2 f)(x) + \ldots
\]

where \(\bar{L}f(x) = b(x)f'(x) + \frac{\sigma^2(x)}{2}f''(x) \).
• Denoting the jump times of N by $\tau_1 < \tau_2 < \ldots$,

$$X_t = x + \int_0^t b(X_s)ds + \int_0^t \sigma(X_s)dW_s + \sum_{i=1}^{N_t} \gamma(X_{\tau_i}, J_i).$$

• Conditioning on N_t,

$$\mathbb{E}[f(X_t)] = e^{-\lambda t}\mathbb{E}[f(X_t)|N_t = 0] + e^{-\lambda t}\mathbb{E}[f(X_t)|N_t = 1] + e^{-\lambda t}\mathbb{E}[f(X_t)|N_t = 2] \frac{(\lambda t)^2}{2} + \ldots$$

• Let $\bar{X}(y) = \{\bar{X}_t(y)\}_{t \geq 0}$ be defined as $\bar{X}_t(y) = y + \int_0^t b(\bar{X}_s)ds + \int_0^t \sigma(\bar{X}_s)d\bar{W}_s$

• One-Jump Term:

$$\mathbb{E}[f(X_t)|N_t = 1] = \mathbb{E}\left[f\left(x + \int_0^t b(X_s)ds + \int_0^t \sigma(X_s)dW_s + \gamma(X_{\tau_1}, J_1)\right)|N_t = 1\right]$$

$$= \frac{1}{t} \int_0^t \mathbb{E}\left[f\left(x + \int_0^s b(X_s)ds + \int_0^s \sigma(X_s)dW_s + \gamma(X_{\tau_1}, J_1)\right)|N_t = 1\right] ds$$

$$= \frac{1}{t} \int_0^t \mathbb{E}[F_{t-s}(\bar{X}_{s-}(x))] ds,$$

where $F_u(z) = \mathbb{E}[f(\bar{X}_u(z + \gamma(z, J_1)))]$

• As it turns out, when the density of J_1 and γ are smooth, $\gamma(z, J_1)$ regularized $f(\bar{X}_u(z + \gamma(z, J_1)))$ and

$$F_u(z) = F^{(0)}(z) + uF^{(1)}(z) + u^2 R(z).$$
Denoting the jump times of N by $\tau_1 < \tau_2 < \ldots$,

$$X_t = x + \int_0^t b(X_s)ds + \int_0^t \sigma(X_s)dW_s + \sum_{i=1}^{N_t} \gamma(X_{\tau_i}, J_i).$$

Conditioning on N_t,

$$\mathbb{E}[f(X_t)] = e^{-\lambda t}\mathbb{E}[f(X_t)|N_t=0] + e^{-\lambda t}\mathbb{E}[f(X_t)|N_t=1] \lambda t + e^{-\lambda t}\mathbb{E}[f(X_t)|N_t=2] \frac{(\lambda t)^2}{2} + \ldots$$

Let $\bar{X}(y) = \{\bar{X}_t(y)\}_{t \geq 0}$ be defined as $\bar{X}_t(y) = y + \int_0^t b(\bar{X}_s)ds + \int_0^t \sigma(\bar{X}_s)d\bar{W}_s$

One-Jump Term:

$$\mathbb{E}[f(X_t)|N_t=1] = \mathbb{E}\left[f\left(x + \int_0^t b(X_s)ds + \int_0^t \sigma(X_s)dW_s + \gamma(X_{\tau_1}, J_1)\right)|N_t=1\right]$$

$$= \frac{1}{t} \int_0^t \mathbb{E}\left[f\left(x + \int_0^s b(X_s)ds + \int_0^s \sigma(X_s)dW_s + \gamma(X_{\tau_1}, J_1)\right)|N_t=1\right] ds$$

$$= \frac{1}{t} \int_0^t \mathbb{E}\left[F_{\bar{X}_s}(\bar{X}_s(x))\right] ds,$$

where $F_u(z) = \mathbb{E}\left[f(\bar{X}_u(z + \gamma(z, J_1))))\right]$

As it turns out, when the density of J_1 and γ are smooth, $\gamma(z, J_1)$ regularized

$$f(\bar{X}_u(z + \gamma(z, J_1)))$$

and

$$F_u(z) = F^{(0)}(z) + uF^{(1)}(z) + u^2 R(z).$$
General Jump-Diffusion Process (F-L, Luo, and Ouyang, 2014)

- Denoting the jump times of N by $\tau_1 < \tau_2 < \ldots$,
 \[X_t = x + \int_0^t b(X_s)ds + \int_0^t \sigma(X_s)dW_s + \sum_{i=1}^{N_t} \gamma \left(X_{\tau_i}, J_i \right) . \]

- Conditioning on N_t,
 \[\mathbb{E} [f(X_t)] = e^{-\lambda t} \mathbb{E} [f(X_t) | N_t = 0] + e^{-\lambda t} \mathbb{E} [f(X_t) | N_t = 1] \lambda t + e^{-\lambda t} \mathbb{E} [f(X_t) | N_t = 2] \frac{(\lambda t)^2}{2} + \ldots \]

- Let $\bar{X}(y) = \{ \bar{X}_t(y) \}_{t \geq 0}$ be defined as $\bar{X}_t(y) = y + \int_0^t b(\bar{X}_s)ds + \int_0^t \sigma(\bar{X}_s)d\bar{W}_s$

- One-Jump Term:
 \[\mathbb{E} [f(X_t) | N_t = 1] = \mathbb{E} \left[f \left(x + \int_0^t b(X_s)ds + \int_0^t \sigma(X_s)dW_s + \gamma \left(X_{\tau_1}, J_1 \right) \right) | N_t = 1 \right] \]
 \[= \frac{1}{t} \int_0^t \mathbb{E} \left[f \left(x + \int_0^t b(X_s)ds + \int_0^t \sigma(X_s)dW_s + \gamma \left(X_{\tau_1}, J_1 \right) \right) | N_t = 1 \right] du \]
 \[= \frac{1}{t} \int_0^t \mathbb{E} \left[F_{t-s} \left(\bar{X}_{t-s}(x) \right) \right] du, \]
 where $F_u(z) = \mathbb{E} [f \left(\bar{X}_u(z + \gamma(z, J_1)) \right)]$

- As it turns out, when the density of J_1 and γ are smooth, $\gamma(z, J_1)$ regularized $f \left(\bar{X}_u(z + \gamma(z, J_1)) \right)$ and
 \[F_u(z) = F^{(0)}(z) + uF^{(1)}(z) + u^2 R(z). \]
General Jump-Diffusion Process (F-L, Luo, and Ouyang, 2014)

- Denoting the jump times of N by $\tau_1 < \tau_2 < \ldots$,
 \[
 X_t = x + \int_0^t b(X_s)ds + \int_0^t \sigma(X_s)dW_s + \sum_{i=1}^{N_t} \gamma \left(X_{\tau_i}^-, J_i \right).
 \]

- Conditioning on N_t,
 \[
 \mathbb{E} [f(X_t)] = e^{-\lambda t} \mathbb{E} [f(X_t) | N_t = 0] + e^{-\lambda t} \mathbb{E} [f(X_t) | N_t = 1] \lambda t + e^{-\lambda t} \mathbb{E} [f(X_t) | N_t = 2] \frac{(\lambda t)^2}{2} + \ldots
 \]

- Let $\bar{X}(y) = \{ \bar{X}_t(y) \}_{t \geq 0}$ be defined as $\bar{X}_t(y) = y + \int_0^t b(\bar{X}_s)ds + \int_0^t \sigma(\bar{X}_s)d\bar{W}_s$

- One-Jump Term:
 \[
 \mathbb{E} [f(X_t) | N_t = 1] = \mathbb{E} \left[f \left(x + \int_0^t b(X_s)ds + \int_0^t \sigma(X_s)dW_s + \gamma(X_{\tau_1}^-, J_1) \right) | N_t = 1 \right]
 \]
 \[
 = \frac{1}{t} \int_0^t \mathbb{E} \left[f \left(x + \int_0^u b(X_s)ds + \int_0^u \sigma(X_s)dW_s + \gamma(X_{u}^-, J_1) \right) | N_t = 1 \right] du
 \]
 \[
 = \frac{1}{t} \int_0^t \mathbb{E} \left[F_{t-u} (\bar{X}_u^- (x)) \right] du,
 \]
 where $F_u(z) = \mathbb{E} [f \left(\bar{X}_u (z + \gamma(z, J_1)) \right)]$

- As it turns out, when the density of J_1 and γ are smooth, $\gamma(z, J_1)$ regularized $f \left(\bar{X}_u (z + \gamma(z, J_1)) \right)$ and
 \[
 F_u(z) = F^{(0)}(z) + uF^{(1)}(z) + u^2 R(z).
 \]
General Jump-Diffusion Process (F-L, Luo, and Ouyang, 2014)

- Denoting the jump times of N by $\tau_1 < \tau_2 < \ldots$,
 $$X_t = x + \int_0^t b(X_s)ds + \int_0^t \sigma(X_s)dW_s + \sum_{i=1}^{N_t} \gamma \left(X_{\tau_i^-}, J_i \right).$$

- Conditioning on N_t,
 $$\mathbb{E} [f(X_t)] = e^{-\lambda t} \mathbb{E} [f(X_t) \mid N_t = 0] + e^{-\lambda t} \mathbb{E} [f(X_t) \mid N_t = 1] \lambda t + e^{-\lambda t} \mathbb{E} [f(X_t) \mid N_t = 2] \frac{(\lambda t)^2}{2} + \ldots$$

- Let $\tilde{X}(y) = \{\tilde{X}_t(y)\}_{t \geq 0}$ be defined as $\tilde{X}_t(y) = y + \int_0^t b(\tilde{X}_s)ds + \int_0^t \sigma(\tilde{X}_s)d\tilde{W}_s$

- One-Jump Term:
 $$\mathbb{E} [f(X_t) \mid N_t = 1] = \mathbb{E} \left[f \left(x + \int_0^t b(X_s)ds + \int_0^t \sigma(X_s)dW_s + \gamma(X_{\tau_1^-}, J_1) \right) \mid N_t = 1 \right]$$
 $$= \frac{1}{t} \int_0^t \mathbb{E} \left[f \left(x + \int_0^t b(X_s)ds + \int_0^t \sigma(X_s)dW_s + \gamma(X_{u^-}, J_1) \right) \mid N_t = 1 \right] du$$
 $$= \frac{1}{t} \int_0^t \mathbb{E} \left[F_{t-s} (\tilde{X}_{s^-}(x)) \right] du,$$
 where $F_{u}(z) = \mathbb{E} [f(\tilde{X}_{u}(z + \gamma(z, J_1)))].$

- As it turns out, when the density of J_1 and γ are smooth, $\gamma(z, J_1)$ regularized $f(\tilde{X}_{u}(z + \gamma(z, J_1)))$ and
 $$F_u(z) = F^{(0)}(z) + uF^{(1)}(z) + u^2 R(z).$$
State-Dependent Jump-Diffusion Process (F-L and Luo, 2015)

- **Idea:** Reduce the problem to that for a suitably defined "Jump-Diffusion Process".
- Infinitesimal Generator of a State-Dependent Jump-Diffusion:
 \[
 Lf(x) = b(x)f'(x) + \frac{\sigma^2(x)}{2}f''(x) + \int_{\mathbb{R}} \{f(x + \gamma(x, z)) - f(x)\} \, dz;
 \]
- Infinitesimal Generator of a Jump-Diffusion:
 \[
 \tilde{L}f(x) = b(x)f'(x) + \frac{\sigma^2(x)}{2}f''(x) + \int_{\mathbb{R}} \{f(x + \tilde{\gamma}(x, z)) - f(x)\} \, dz;
 \]
- Assumption: For each \(x, z \to \nu(x, z)\) is positive and continuous s.t. \(\int_{-\infty}^{0} \nu(x, z) \, dz\) and \(\int_{0}^{\infty} \nu(x, z) \, dz\) remain constant;
- Fix an arbitrary positive continuous \(\tilde{\nu}\) such that \(\int_{-\infty}^{0} \tilde{\nu}(z) \, dz = \int_{-\infty}^{0} \nu(x, z) \, dz\) and \(\int_{0}^{\infty} \tilde{\nu}(z) \, dz = \int_{-\infty}^{0} \nu(x, z) \, dz\).
 Let
 \[
 \tilde{\nu}(w) = \begin{cases}
 \int_{-\infty}^{w} \tilde{\nu}(r) \, dr, & w < 0, \\
 -\int_{w}^{\infty} \tilde{\nu}(r) \, dr, & w > 0,
 \end{cases}
 \]
 \[
 \tilde{\nu}(x, w) := \begin{cases}
 \int_{-\infty}^{w} \nu(x, r) \, dr, & w < 0, \\
 -\int_{w}^{\infty} \nu(x, r) \, dr, & w > 0.
 \end{cases}
 \]
- Then, \(Lf(x) = \tilde{L}f(x)\) holds with
 \[
 \tilde{\gamma}(x, z) = \gamma \left(x, \tilde{\nu}^{-1}(x, \tilde{\nu}(z)) \right),
 \]
 where \(\tilde{\nu}^{-1}(x, u)\) is the inverse of \(z \to \tilde{\nu}(x, z) = u\) for each \(x\).
State-Dependent Jump-Diffusion Process (F-L and Luo, 2015)

- **Idea:** Reduce the problem to that for a suitably defined "Jump-Diffusion Process".

- **Infinitesimal Generator of a State-Dependent Jump-Diffusion:**

 $Lf(x) = b(x)f'(x) + \frac{\sigma^2(x)}{2} f''(x) + \int_{\mathbb{R}} \{f(x + \gamma(x, z)) - f(x)\} \lambda(x)g(z; x)dz$;

- **Infinitesimal Generator of a Jump-Diffusion:**

 $\tilde{L}f(x) = b(x)f'(x) + \frac{\sigma^2(x)}{2} f''(x) + \int_{\mathbb{R}} \{f(x + \tilde{\gamma}(x, z)) - f(x)\} \tilde{\lambda}(\tilde{g}(z)dz$;

- **Assumption:** For each x, $z \rightarrow \nu(x, z)$ is positive and continuous s.t.

 $\int_{-\infty}^{0} \nu(x, z)dz$ and $\int_{0}^{\infty} \nu(x, z)dz$ remain constant;

- Fix an arbitrary positive continuous $\tilde{\nu}$ such that $\int_{-\infty}^{0} \tilde{\nu}(z)dz = \int_{-\infty}^{0} \nu(x, z)dz$ and $\int_{0}^{\infty} \tilde{\nu}(z)dz = \int_{-\infty}^{0} \nu(x, z)dz$.

 Let

 $\nu(w) = \begin{cases} \int_{-\infty}^{w} \nu(r)dr, & w < 0, \\ -\int_{w}^{\infty} \nu(r)dr, & w > 0, \end{cases}$

 $\tilde{\nu}(w) = \begin{cases} \int_{-\infty}^{w} \tilde{\nu}(r)dr, & w < 0, \\ -\int_{w}^{\infty} \tilde{\nu}(r)dr, & w > 0. \end{cases}$

- Then, $Lf(x) = \tilde{L}f(x)$ holds with

 $\tilde{\gamma}(x, z) = \gamma \left(x, \nu^{-1}(x, \nu(z))\right)$,

 where $\nu^{-1}(x, u)$ is the inverse of $z \rightarrow \nu(x, z) = u$ for each x.
State-Dependent Jump-Diffusion Process (F-L and Luo, 2015)

- **Idea:** Reduce the problem to that for a suitably defined "Jump-Diffusion Process".

- **Infinitesimal Generator of a State-Dependent Jump-Diffusion:**
 \[
 Lf(x) = b(x)f'(x) + \frac{\sigma^2(x)}{2}f''(x) + \int_{\mathbb{R}} \{f(x + \gamma(x, z)) - f(x)\} \nu(x, z)dz;
 \]

- **Infinitesimal Generator of a Jump-Diffusion:**
 \[
 \tilde{L}f(x) = b(x)f'(x) + \frac{\sigma^2(x)}{2}f''(x) + \int_{\mathbb{R}} \{f(x + \tilde{\gamma}(x, z)) - f(x)\} \tilde{\nu}(z)dz;
 \]

- **Assumption:** For each \(x, z \rightarrow \nu(x, z)\) is positive and continuous s.t. \(\int_{-\infty}^{0} \nu(x, z)dz\) and \(\int_{0}^{\infty} \nu(x, z)dz\) remain constant;

- Fix an arbitrary positive continuous \(\tilde{\nu}\) such that \(\int_{-\infty}^{0} \tilde{\nu}(z)dz = \int_{-\infty}^{0} \nu(x, z)dz\) and \(\int_{0}^{\infty} \tilde{\nu}(z)dz = \int_{-\infty}^{0} \nu(x, z)dz\). Let

 \[
 \tilde{\nu}(w) = \begin{cases}
 \int_{-\infty}^{w} \tilde{\nu}(r)dr, & w < 0, \\
 - \int_{w}^{\infty} \tilde{\nu}(r)dr, & w > 0,
 \end{cases}
 \]

 \[
 \tilde{\nu}(x, w) := \begin{cases}
 \int_{-\infty}^{w} \nu(x, r)dr, & w < 0, \\
 - \int_{w}^{\infty} \nu(x, r)dr, & w > 0.
 \end{cases}
 \]

- Then, \(Lf(x) = \tilde{L}f(x)\) holds with

 \[
 \tilde{\gamma}(x, z) = \gamma \left(x, \tilde{\nu}^{-1}(x, \tilde{\nu}(z))\right),
 \]

 where \(\tilde{\nu}^{-1}(x, u)\) is the inverse of \(z \rightarrow \tilde{\nu}(x, z) = u\) for each \(x\).
State-Dependent Jump-Diffusion Process (F-L and Luo, 2015)

- **Idea**: Reduce the problem to that for a suitably defined "Jump-Diffusion Process".
- **Infinitesimal Generator of a State-Dependent Jump-Diffusion**:
 \[Lf(x) = b(x)f'(x) + \frac{\sigma^2(x)}{2}f''(x) + \int_{\mathbb{R}} \{ f(x + \gamma(x, z)) - f(x) \} \nu(x, z)dz; \]
- **Infinitesimal Generator of a Jump-Diffusion**:
 \[\tilde{L}f(x) = b(x)f'(x) + \frac{\sigma^2(x)}{2}f''(x) + \int_{\mathbb{R}} \{ f(x + \tilde{\gamma}(x, z)) - f(x) \} \tilde{\nu}(z)dz; \]
- **Assumption**: For each \(x, z \rightarrow \nu(x, z) \) is positive and continuous s.t. \(\int_{-\infty}^{0} \nu(x, z)dz \) and \(\int_{0}^{\infty} \nu(x, z)dz \) remain constant;
- **Fix an arbitrary positive continuous \(\tilde{\nu} \) such that \(\int_{-\infty}^{0} \tilde{\nu}(z)dz = \int_{-\infty}^{0} \nu(x, z)dz \) and \(\int_{0}^{\infty} \tilde{\nu}(z)dz = \int_{-\infty}^{0} \nu(x, z)dz \). Let
 \[\tilde{\nu}(w) = \begin{cases} \int_{-\infty}^{w} \tilde{\nu}(r)dr, & w < 0, \\ \int_{w}^{\infty} \tilde{\nu}(r)dr, & w > 0, \end{cases} \]
 \[\tilde{\nu}(x, w) := \begin{cases} \int_{-\infty}^{w} \nu(x, r)dr, & w < 0, \\ \int_{w}^{\infty} \nu(x, r)dr, & w > 0. \end{cases} \]
- Then, \(Lf(x) = \tilde{L}f(x) \) holds with
 \[\tilde{\gamma}(x, z) = \gamma \left(x, \tilde{\nu}^{-1}(x, \tilde{\nu}(z)) \right), \]
 where \(\tilde{\nu}^{-1}(x, u) \) is the inverse of \(z \rightarrow \tilde{\nu}(x, z) = u \) for each \(x \).
State-Dependent Jump-Diffusion Process (F-L and Luo, 2015)

- **Idea:** Reduce the problem to that for a suitably defined "Jump-Diffusion Process".
- **Infinitesimal Generator of a State-Dependent Jump-Diffusion:**
 \[Lf(x) = b(x)f'(x) + \frac{\sigma^2(x)}{2} f''(x) + \int_{\mathbb{R}} \{ f(x + \gamma(x, z)) - f(x) \} \nu(x, z) dz; \]
- **Infinitesimal Generator of a Jump-Diffusion:**
 \[\tilde{L}f(x) = b(x)f'(x) + \frac{\sigma^2(x)}{2} f''(x) + \int_{\mathbb{R}} \{ f(x + \tilde{\gamma}(x, z)) - f(x) \} \tilde{\nu}(z) dz; \]
- **Assumption:** For each \(x, z \rightarrow \nu(x, z) \) is positive and continuous s.t.
 \[\int_{-\infty}^{0} \nu(x, z) dz \text{ and } \int_{0}^{\infty} \nu(x, z) dz \text{ remain constant}; \]
- **Fix an arbitrary positive continuous \(\tilde{\nu} \) such that \(\int_{-\infty}^{0} \tilde{\nu}(z) dz = \int_{-\infty}^{0} \nu(x, z) dz \text{ and } \int_{0}^{\infty} \tilde{\nu}(z) dz = \int_{-\infty}^{0} \nu(x, z) dz . \) Let
 \[\tilde{\nu}(w) = \begin{cases} \int_{-\infty}^{w} \tilde{\nu}(r) dr, & w < 0, \\ -\int_{w}^{\infty} \tilde{\nu}(r) dr, & w > 0, \end{cases} \]
 \[\tilde{\nu}(x, w) := \begin{cases} \int_{-\infty}^{w} \nu(x, r) dr, & w < 0, \\ -\int_{w}^{\infty} \nu(x, r) dr, & w > 0. \end{cases} \]
- Then, \(Lf(x) = \tilde{L}f(x) \) holds with
 \[\tilde{\gamma}(x, z) = \gamma \left(x, \tilde{\nu}^{-1}(x, \tilde{\nu}(z)) \right), \]
 where \(\tilde{\nu}^{-1}(x, u) \) is the inverse of \(z \rightarrow \tilde{\nu}(x, z) = u \) for each \(x \).
State-Dependent Jump-Diffusion Process (F-L and Luo, 2015)

- **Idea:** Reduce the problem to that for a suitably defined "Jump-Diffusion Process".
- **Infinitesimal Generator of a State-Dependent Jump-Diffusion:**
 \[Lf(x) = b(x)f'(x) + \frac{\sigma^2(x)}{2}f''(x) + \int_{\mathbb{R}} \{ f(x + \gamma(x, z)) - f(x) \} \nu(x, z)dz; \]
- **Infinitesimal Generator of a Jump-Diffusion:**
 \[\tilde{L}f(x) = b(x)f'(x) + \frac{\sigma^2(x)}{2}f''(x) + \int_{\mathbb{R}} \{ f(x + \tilde{\gamma}(x, z)) - f(x) \} \tilde{\nu}(z)dz; \]
- **Assumption:** For each \(x, z \to \nu(x, z) \) is positive and continuous s.t. \(\int_{-\infty}^{0} \nu(x, z)dz \) and \(\int_{0}^{\infty} \nu(x, z)dz \) remain constant;
- Fix an arbitrary positive continuous \(\tilde{\nu} \) such that \(\int_{-\infty}^{0} \tilde{\nu}(z)dz = \int_{-\infty}^{0} \nu(x, z)dz \) and \(\int_{0}^{\infty} \tilde{\nu}(z)dz = \int_{-\infty}^{0} \nu(x, z)dz \) . Let
 \[\tilde{\nu}(w) = \begin{cases}
 \int_{-\infty}^{w} \tilde{\nu}(r)dr, & w < 0, \\
 -\int_{w}^{\infty} \tilde{\nu}(r)dr, & w > 0,
 \end{cases} \]
 \[\tilde{\nu}(x, w) := \begin{cases}
 \int_{-\infty}^{w} \nu(x, r)dr, & w < 0, \\
 -\int_{w}^{\infty} \nu(x, r)dr, & w > 0.
 \end{cases} \]
- Then, \(Lf(x) = \tilde{L}f(x) \) holds with
 \[\tilde{\gamma}(x, z) = \gamma \left(x, \tilde{\nu}^{-1}(x, \tilde{\nu}(z)) \right), \]
 where \(\tilde{\nu}^{-1}(x, u) \) is the inverse of \(z \to \tilde{\nu}(x, z) = u \) for each \(x \).
Future and Ongoing Work

1. Extensions to path-dependent functionals:
 e.g., asymptotic behavior of \(\mathbb{E} [f(X_s, X_t)] \) or \(\mathbb{E} [f(\sup_{u \leq t} X_u)] \) as \(s, t \to 0 \);

2. Extensions to \(\mathbb{R}^k \)-dimensional processes \(X \);

3. Extensions to time-dependent moment functions:
 \(\mathbb{E} [f_t(X_t)] \), where \(f_t(x) \to f_0(x) \) as \(t \to 0 \).

4. Probabilistic characterizations of the expansion coefficients amicable to Monte Carlo valuations of the expansions.
For Further Reading I

Figueroa-López, J.E. & Houdré, C.
Small-time expansions for the transition distributions of Lévy processes.

Figueroa-López, J.E., Luo, Y., & Ouyang, C.
Small-time expansions for local jump-diffusion models with infinite jump activity.
Bernoulli 20(3) 1165-1209, 2014.

Figueroa-López, J.E., & Luo, Y.
Small-time expansions for state-dependent local jump-diffusion models with infinite jump activity.
Arxiv 2015.