The Arzelà-Ascoli Theorem

The Arzelà-Ascoli Theorem gives sufficient conditions for compactness in certain function spaces. Among other things, it helps provide some additional perspective on what compactness means.

Let $C([0,1])$ denote the set of continuous functions $f : [0,1] \to \mathbb{R}$. Because the domain is compact, one can show (I leave this as an exercise) that any $f \in C([0,1])$ is uniformly continuous: for any $\varepsilon > 0$ there is a $\delta > 0$ such that if $|x - \hat{x}| < \delta$ then $|f(x) - f(\hat{x})| < \varepsilon$. An example of a function that is continuous but not uniformly continuous is $f : (0,1] \to \mathbb{R}$ given by $f(x) = 1/x$.

A set $F \subseteq C([0,1])$ is (uniformly) equicontinuous iff for any $\varepsilon > 0$ there exists a $\delta > 0$ such that for all $f \in F$, if $|x - \hat{x}| < \delta$ then $|f(x) - f(\hat{x})| < \varepsilon$. That is, if F is (uniformly) equicontinuous then every $f \in F$ is uniformly continuous and for every $\varepsilon > 0$ and every $f \in F$, I can use the same $\delta > 0$.

Example 3 below gives an example of a set of (uniformly) continuous functions that is not equicontinuous. A trivial example of an equicontinuous set of functions is a set of functions such that any pair of functions differ from each other by an additive constant: for any f and g in the set, there is an a such that for all $x \in [0,1]$, $f(x) = \hat{f}(x) + a$. A more interesting example is given by a set of differentiable functions for which the derivative is uniformly bounded: there is a $W > 0$ such that for all $x, \hat{x} \in [0,1]$ and all $\theta \in (x, \hat{x})$, $|Df(x)| < W$. In this case, for any $x, \hat{x} \in [0,1], \hat{x} > x$, there is, by the Mean Value Theorem, a $\theta \in (x, \hat{x})$ such that

$$(f(x) - f(\hat{x})) = Df(\theta)(x - \hat{x}),$$

hence

$$|f(x) - f(\hat{x})| < W|x - \hat{x}|,$$

which implies equicontinuity.

Consider the sup metric on $C([0,1])$ given by, for any $f, g \in C([0,1])$

$$d_{\text{sup}}(f, g) = \sup_{x \in [0,1]} |f(x) - g(x)|.$$

This metric is well defined since $[0,1]$ is compact, $f - g$ is continuous, and absolute value is continuous. It is easy to verify (by a now standard argument) that this metric is indeed a metric (in particular, satisfies the triangle inequality). Convergence under d_{sup} is uniform convergence: $f_t \to f^*$ iff for any $\varepsilon > 0$ there is a T such that for all $t > T$ and all $x \in [0,1]$, $|f_t(x) - f^*(x)| < \varepsilon$. Henceforth, fix d_{sup} as the metric for $C([0,1])$. $C([0,1])$ is complete; the proof is almost identical to the proof that $(\ell^\infty, d_{\text{sup}})$ is complete.
Theorem 1. If $F \subseteq C([0,1])$ is equicontinuous then so is F.

Proof. Fix $\varepsilon > 0$ and fix any $\hat{\varepsilon} \in (0,\varepsilon)$. Since F is equicontinuous, there is a $\delta > 0$ such that for any $g \in F$ and $x, \hat{x} \in [0,1]$, if $|x - \hat{x}| < \delta$ then $|g(x) - g(\hat{x})| < \hat{\varepsilon}$.

Consider, then, any $f \in \overline{F}$. There is a sequence (f_t) in F such that $f_t \rightarrow f$. For any $x, \hat{x} \in [0,1]$, if $|x - \hat{x}| < \delta$ then, by the triangle inequality,

$$|f(x) - f(\hat{x})| \leq |f(x) - f_t(x)| + |f_t(x) - f_t(\hat{x})| + |f(\hat{x}) - f_t(\hat{x})| < \hat{\varepsilon} + |f(x) - f_t(x)| + |f(\hat{x}) - f_t(\hat{x})|.$$

Hence, since $f_t \rightarrow f$ and $\hat{\varepsilon} < \varepsilon$,

$$|f(x) - f(\hat{x})| < \varepsilon.$$

The basic Arzelà-Ascoli Theorem, formalized below, says that if a set $F \subseteq C([0,1])$ is closed, bounded, and equicontinuous, then it is compact. Recall that the Heine-Borel Theorem states that, in \mathbb{R}^N, a set that is closed and bounded is compact. In contrast, in infinite-dimensional normed vector spaces, including $C([0,1])$, closed and bounded sets need not be compact and closed balls are never compact. The basic Arzelà-Ascoli Theorem can be viewed as fixing the problems of Heine-Borel in $C([0,1])$ by adding “equicontinuous” as an extra condition.

Theorem 2 (Basic Arzelà-Ascoli). If $F \subseteq C([0,1])$ is closed, bounded, and equicontinuous then it is compact.

Proof. Let $F \subseteq C([0,1])$ be equicontinuous and bounded. By boundedness, there is an $M > 0$ such that for all $f \in F$ and all $x \in [0,1]$, $|f(x)| < M$.

Let (f_t) be a sequence in F. I need to show that there is a subsequence f_{t_k} and a function $f^* \in F$ such that $f_{t_k} \rightarrow f^*$.

The proof has two main steps. The first uses boundedness to argue that there exists a subsequence f_{t_k} that converges pointwise at every rational number in $[0,1]$. The second step then uses the fact that F is closed and equicontinuous, together with the fact that $[0,1]$ is compact, to argue that (f_{t_k}) is Cauchy.

- **Step 1.** Let A be the set of rational elements of $[0,1]$ and let (a_1, a_2, \ldots) be an enumeration of the rationals in $[0,1]$. Then $(f_t(a_1))$ is a sequence in the compact set $[-M,M] \subseteq \mathbb{R}$ and hence has a convergent subsequence; denote a generic index in this subsequence $t_{(1,1)}$. Set t_1, the first index in the subsequence (f_{t_k}) that I am constructing, equal to $t_{(1,1)}$.

And so on. At stage $k + 1$, $f_{t_{(k,1)}}(a_{k+1})$ is a sequence in the compact set $[-M,M] \subseteq \mathbb{R}$ and hence has a convergent subsequence; denote a generic index in this subsequence $t_{(i,k+1)}$. Set $t_{k+1} = t_{(k+1,k+1)}$. Note that $t_{k+1} > t_k$.

By construction, for every \(j \), \((f_t^k(a_j))\) is a convergent subsequence of \((f_t(a_j))\); in particular, all but (at most) finitely many terms of \((f_t^k(a_j))\) belong to \((f_{t_{i(j)}}(a_j))\). For every \(j \), set \(f^*(a_j) = \lim_{k \to \infty} f_t^k(a_j) \).

- **Step 2.** I claim that \((f_t^k)\) is Cauchy. Since, by assumption, \(F \) is a closed subset of \(C([0,1]) \), which is complete, \(F \) is complete, and the proof follows. It remains to show that \((f_t^k)\) is Cauchy.

 Fix \(\varepsilon > 0 \) and any \(\hat{\varepsilon} \in (0,\varepsilon) \). By equicontinuity, there is a \(\delta > 0 \) such that for any \(x \in [0,1] \) and any \(a \in A \), if \(|x - a| < \delta \) then, for any \(k \),

 \[
 |f_t^k(x) - f_t^k(a)| < \frac{\hat{\varepsilon}}{3}.
 \]

 Since \([0,1] \) is compact, it can be covered by a finite number of open intervals with rational centers and radius \(\delta \). (Since \(A \) is dense in \([0,1] \), the set of all open intervals with rational centers covers \([0,1] \). Since \([0,1] \) is compact, a finite subset of these also covers \([0,1] \).) Let \(A_\delta \subseteq A \) denote this finite set of rational centers. For each \(a \in A_\delta \), since \(f_t^k(a) \to f^*(a) \), and hence \((f_t^k(a))\) is Cauchy, there is a \(K_a \) such that for all \(k, \ell > K_a \),

 \[
 |f_t^k(a) - f_t^\ell(a)| < \frac{\hat{\varepsilon}}{3}.
 \]

 Let \(K = \max_{a \in A_\delta} K_a \). Since \(A_\delta \) is finite, \(K \) is well defined (in particular, finite).

 Consider, then, any \(x \in [0,1] \). Choose \(a \in A_\delta \) such that \(x \) is in the \(\delta \) interval around \(a \). Then for any \(k, \ell > K \),

 \[
 |f_t^k(x) - f_t^\ell(x)| \leq |f_t^k(x) - f_t^k(a)| + |f_t^k(a) - f_t^\ell(a)| + |f_t^\ell(x) - f_t^\ell(a)| < \hat{\varepsilon}.
 \]

 Therefore, \(\sup_{x \in [0,1]} |f_t^k(x) - f_t^\ell(x)| \leq \hat{\varepsilon} < \varepsilon \), which proves the claim that \(f_t^k \) is Cauchy.

Finally, since \(F \) is a closed subset of a complete space, it is complete, and hence, since \((f_t^k)\) is Cauchy, there is an \(f^* \in F \) to which \((f_t^k)\) converges. ■

The basic Arzelà-Ascoli Theorem implies that if \(F \) is bounded and equicontinuous then its closure is compact. (The closure of \(F \) is equicontinuous, by Theorem 1, and it is bounded because, in any metric space, the closure of a bounded set is bounded; see the notes on Metric Spaces.) This implies the following corollary, which is frequently the form in which the basic Arzelà-Ascoli Theorem is stated.

Theorem 3 (Basic Arzelà-Ascoli - Alternate Form). If \(F \subseteq C([0,1]) \) is bounded and equicontinuous then for any sequence \((f_t^i)\) in \(F \) there is a subsequence \((f_t^k)\) and an \(f^* \in C([0,1]) \) such that \(f_t^k \to f^* \).
The following examples illustrate the basic Arzelà-Ascoli Theorem and the role of equicontinuity.

Example 1. For \(t \in \{2, 3, \ldots\} \), define \(f_t : [0, 1] \to \mathbb{R} \) by

\[
f_t(x) = \begin{cases} 1 & \text{if } x \in [0, 1/t] \\ 0 & \text{if } x \in (1/t, 1]. \end{cases}
\]

This sequence converges pointwise to \(f^* \) defined by

\[
f^*(x) = \begin{cases} 1 & \text{if } x = 0 \\ 0 & \text{if } x \in (0, 1]. \end{cases}
\]

Convergence is not uniform, however. Indeed, \(d_{\sup}(f_t, f^*) = 1 \) for every \(t \), since for every \(t \) there are \(x > 0 \) for which \(f_t(x) = 1 \). There are no Cauchy subsequences of \((f_t) \) (under \(d_{\sup} \)) and hence no convergent subsequences. Thus, setting \(F = \{f_t\} \), \(F \) is not compact. This example somewhat resembles the example in the \(\mathbb{R}^\omega \) notes showing that closed balls in \((\ell_\infty, d_{\sup}) \) are not compact.

Note, however, that in this example the \(f_t \) are not continuous, hence are not members of \(C([0, 1]) \), and, therefore, \(F \) is not equicontinuous. \(\square \)

Example 2. Fix any \(\gamma \in (0, 1/4) \). I modify the functions in the previous example to make them continuous by inserting a segment of length \(\gamma \) and slope \(-1/\gamma\). Explicitly, for \(t \in \{2, 3, \ldots\} \), define \(g_t : [0, 1] \to \mathbb{R} \) by

\[
g_t(x) = \begin{cases} 1 & \text{if } x \in [0, 1/t] \\ -\frac{x}{\gamma} + \frac{1}{\gamma} + 1 & \text{if } x \in (1/t, 1/t + \gamma] \\ 0 & \text{if } x \in (1/t + \gamma, 1]. \end{cases}
\]

Let \(G = \{g_t\} \). Then \(G \) is equicontinuous; in particular, for any \(\varepsilon > 0 \), set \(\delta = \varepsilon \gamma \).

By Arzelà-Ascoli (alternate form), \((g_t) \) has a subsequence that converges uniformly to a continuous function, and indeed the entire sequence converges uniformly to

\[
g^*(x) = \begin{cases} -\frac{x}{\gamma} + 1 & \text{if } x = [0, \gamma] \\ 0 & \text{if } x \in (\gamma, 1]. \end{cases}
\]

Note that \(\gamma \) can be made arbitrary small. So this example can be made close, in a sense, to that of Example 1. \(\square \)

Example 3. Finally, consider an example similar to Example 2 but now with \(\gamma_t \) that shrinks as \(t \) grows. In particular, fix \(\gamma \in (0, 1/4) \) and let \(\gamma_t = \gamma/t \). For \(t \in \{2, 3, \ldots\} \), define \(h_t : [0, 1] \to \mathbb{R} \) by

\[
h_t(x) = \begin{cases} 1 & \text{if } x \in [0, 1/t] \\ -\frac{x}{\gamma_t} + \frac{1}{\gamma} + 1 & \text{if } x \in (1/t, 1/t + \gamma/t] \\ 0 & \text{if } x \in (1/t + \gamma/t, 1]. \end{cases}
\]
Note, in particular, that the slope of the middle section is $-t/\gamma$, which is increasing in t.

Let $\mathcal{H} = \{h_t\}$. Then \mathcal{H} is a subset of $C([0,1])$ but it is not equicontinuous. For any given t and any $\varepsilon > 0$, uniform continuity for f_t requires a δ_t of no more than $\varepsilon\gamma/t$, which depends on t. There is no single δ that will work for all f_t.

The sequence (h_t) converges pointwise to f^*, the same f^* as in Example 1. The sequence does not converge uniformly to f^*, however, and indeed it could not because f^* is not continuous (remember that $C([0,1])$ is complete under d_{sup}). Under d_{sup}, (h_t) has no Cauchy subsequences and hence no convergent subsequences. This helps illustrate the importance of equicontinuity in Arzelà-Ascoli. □

The ideas behind the basic Arzelà-Ascoli Theorem can be extended to more general environments in a number of ways, one example of which is the following. Given metric spaces (X,d_X) and (Y,d_Y), let $C(X,Y)$ denote the set of continuous functions from X to Y. If X is compact, define the sup metric on $C(X,Y)$ by, for any $f, g \in C(X,Y)$,

$$d_{\text{sup}}(f,g) = \sup_{x \in X} d_Y(f(x),g(x)).$$

This metric is well defined since X is compact, f and g are continuous, and d_Y is continuous with respect to the max metric on $Y \times Y$ (see the notes on Continuity). By essentially the same argument as for $(\ell^\infty,d_{\text{sup}})$, $C(X,Y)$ with the sup metric is complete. And, by essentially the same argument as for Theorem 1, the closure of an equicontinuous set of functions in $C(X,Y)$ is equicontinuous.

Theorem 4 (Generalized Arzelà-Ascoli Theorem). Let (X,d_X) and (Y,d_Y) be compact metric spaces and let F be a subset of $C(X,Y)$. If F is closed and equicontinuous then it is compact.

Proof. Since X is a compact metric space, it has a countable dense set A (I leave showing this as an exercise). The proof is then almost the same as the proof of Theorem 2. In particular, the set A here plays the same role in the proof of Theorem 4 as the rationals in $[0,1]$ did in the proof of Theorem 2. ■

The Arzelà-Ascoli Theorem can be generalized still further but I will not do so.