Income Distribution

Ping Wang
Department of Economics
Washington University in St. Louis

April 2018
A. Introduction

- **Stylized facts (U.S. over the past 4 or 5 decades):**
 - wage inequality increased sharply: 90%-10% ratio rose by over 40%, documented by Katz-Autor (1999)
 - despite an increase in skill premium/between-group inequality, the majority of the increase in wage inequality is *residual*, due to unobserved characteristics of workers in the same education and demographic group
- While the literature provides adequate explanation on the between-group inequality, it is largely failed in explaining the within-the-skilled-group inequality, with only a few attempts including, Aghion (2000), Violante (2002), Jovanovic (2009) and Tang and Wang (2014)
- Most of the existing studies focus on ex ante fixed innate ability, such as
- Inequality is also associated with geographic stratification, particularly within municipals and to some degree across different regions
 - *Banabou (1996)* offers a simple framework for human capital stratification
 - *Acemoglu-Dell (2009)* provide useful decomposition of wage inequalities
Recently, Piketty (2014) emphasizes a sharp rise in inequality particularly between the super rich (top 1%) and the low or even middle income groups
- historical data: Piketty (2014)
- new data: tax administrative data (no top coding), wealth data

Wealth inequality:
B. Education Provision, Growth and Inequality: Glomm-Ravikumar (1992)

- Different from the representative-agent framework developed by Lucas (1988), this paper allows for human capital heterogeneity, which enables a clean study of the issues of growth vs. distribution as well as private vs. public education

1. The Model

- 2-period lived agents, who work when young and consume when old (endogenous labor-leisure trade-off, with altruism)
- Preferences: \(V_t = \ln n_t + \ln c_{t+1} + \ln e_{t+1} \), that is, and agent of generation-t cares leisure, consumption and the offspring’s quality of education
- Human Capital:
 - distribution: \(G_t(h) \sim \text{log normal} (\mu_t, \delta_t^2) \)
 - evolution: \(h_{t+1} = \theta h_t^\delta (1 - n_t)^\beta e_t^\gamma \), \(\delta, \beta, \gamma \in (0, 1) \) (Lucas: \(\gamma = 0, \delta = \beta = 1 \))
- CRS production: output = \(h_{t+1} \)
Two educational system:

- **public education:**
 \[E_{t+1} = \tau_{t+1} H_{t+1}, \quad H_{t+1} = \int h_{t+1} dG_{t+1}(h_{t+1}) \]
 (income tax) \quad (mean income)

- **private education:**
 \[e_{t+1} = h_{t+1} - c_{t+1} \]

2. Optimization and Equilibrium

a. Public Education:

- **Individual optimization:**
 \[
 \max_{n,c} \ln n_t + \ln c_{t+1} + \ln E_{t+1} \\
 \text{s.t.} \quad c_{t+1} = (1 - \tau_{t+1}) h_{t+1} \\
 h_{t+1} = \theta (1 - n_t) \beta E_t^\gamma h_t^{\delta}
 \]

 \[
 \Rightarrow \max_{n_t} \ln n_t + \ln[(1 - \tau_{t+1}) \theta E_t^\gamma h_t^{\delta}] + \beta \ln(1 - n_t) + \ln E_{t+1}
 \]

- **FOC:**
 \[1 - n_t = \frac{\beta}{1 + \beta} \]
Government optimization:

\[
\max_{\tau} \ln[(1 - \tau_{t+1})h_{t+1} + \ln \tau_{t+1}H_{t+1}] \quad (\because n_t = \frac{1}{1+\beta} \text{fixed})
\]

\[
\Rightarrow \max_{\tau} \ln(1 - \tau) + \ln \tau
\]

- FOC: \(\tau = 1/2\)

- Equilibrium:

 - human capital evolution: \(h_{t+1} = \theta(\frac{\beta}{1+\beta})^\beta(\frac{1}{2})^\gamma H_t^\gamma h_t^\delta = \Lambda H_t^\gamma h_t^\delta\)

 - aggregate human capital: \(H_t = \exp[\mu_t + \frac{\sigma_t^2}{2}]\)

 - mean: \(\mu_{t+1} = \ln A + \gamma \ln H_t + \delta \mu_t\), or, \(\mu_{t+1} = \ln A + (\gamma + \delta)u_t + \frac{\gamma \sigma_t^2}{2}\)

 - variance (inequality measure): \(\sigma_{t+1}^2 = \delta^2 \sigma_t^2\)
b. Private Education

- Individual optimization

\[
\max_{n_t, e_{t+1}} \ln n_t + \ln c_{t+1} + \ln e_{t+1}
\]
\[
s.t. \quad h_{t+1} = \theta(1 - n_t) \beta e_t^\gamma h_t^\delta \\
\quad c_{t+1} = h_{t+1} - e_{t+1}
\Rightarrow \max_{n_t, e_{t+1}} \ln n_t + \ln[\theta(1 - n_t) \beta e_t^\gamma h_t^\delta - e_{t+1}] + \ln e_{t+1}
\]

- FOCs: \(c_{t+1} \equiv e_{t+1} = \frac{1}{2} h_{t+1} \); \(1 - n_t = \frac{\beta}{1 + \beta} > \frac{\beta}{1 + \beta} \) (free-rider in public education)

- Equilibrium:
 - \(h_{t+1} = \theta(\frac{\beta}{1 + \beta})^\beta \left(\frac{1}{2}\right)^\gamma h_t^{\gamma + \delta} \equiv B h_t^{\gamma + \delta} \) (B > A)
 - \(\mu_{t+1} = \ln B + (\gamma + \delta) \mu_t \)
 - \(\sigma_{t+1} = (\gamma + \delta)^2 \sigma_t^2 \)
3. Growth vs. Inequality

- Inequality:
 - Public education: inequality \downarrow over time
 - Private education: inequality may decline (or rise) over time if $\delta + \gamma < (\text{or} >) 1$

- Is inequality harmful for growth?
 - Public education: $H_{t+1} = A H_t^{\gamma + \delta} \exp\left[-\frac{1}{2} \delta (1 - \delta) \sigma_t^2 \right] \Rightarrow \frac{d(H_{t+1})}{d \sigma_t^2} < 0$
 - Private education: $H_{t+1} = B H_t^{\gamma + \delta} \exp\left[\frac{1}{2} (\gamma + \delta)(\gamma + \delta - 1) \sigma_t^2 \right]$
 \[\Rightarrow \frac{d(H_{t+1})}{d \sigma_t^2} < (\text{or} >) 0\] if $\delta + \gamma < (\text{or} >) 1$

- Kuznets curve: the correlation between growth and inequality is consistent with the Kuznets curve under private education
4. Political Economy and Institutional Choice: Public vs. Private Education

- Mechanism: majority voting by the old (political economy) – ignore \(n_t \) (decision by the young)
- Value functions:
 - Public education:
 \[
 V^{\text{old}}(\text{public}) = 2 \ln\left(\frac{1}{2}\right) + \ln h + \mu + \frac{\sigma^2}{2}
 \]
 - Private education:
 \[
 V^{\text{old}}(\text{private}) = 2 \ln\left(\frac{1}{2}\right) + 2 \ln h
 \]
- Median voter’s decision:
 - \(V^{\text{old}}(\text{public}) - V^{\text{old}}(\text{private}) = [\mu - \ln h(\text{median})] + \frac{\delta^2}{2} = \frac{\delta^2}{2} > 0 \)

 (ex ante mean \(\mu = \text{median} < \text{ex post mean} = \mu + \frac{\sigma^2}{2} \), because log normal distribution has a long tail)
- Outcome: select public education system (U.S. : 86%- public education)
- Problem: under public education, the declined income inequality is inconsistent with the real world observation
C. General Purpose Technology and Between/Within-Group Inequality: Aghion (2000)

- Stylized facts in U.S. & U.K: within-group inequality started before between-group inequality
- Equipment price and skill premium – Krusell et al. (2000 Econometrica):

\[y_t = A_t[k_e^{\sigma}(\mu u^\sigma + (1-\mu)(\lambda k_e^p + (1-\lambda)S_t^p)^p)^{\sigma} \frac{1-\alpha}{\sigma}] \]

under \(\frac{1}{1-\sigma} > \frac{1}{1-\rho} \) (stronger complementarity between \(k_e \) and \(S \)),

equipment price \(\downarrow \Rightarrow \frac{W_s}{W_u} \uparrow \)

1. Between-Group Inequality

- General purpose technology (GPT) experimentation and adoption require skilled labor
- Production: \(y = \left[\int_0^1 A(i)^a x(i)^a d\tilde{i} \right]^{1/a} \), \(A(i) = \begin{cases} 1 & \text{if sector } i \text{ uses old GPT} \\ \gamma > 1 & \text{if sector } i \text{ uses new GPT} \end{cases} \)

- Skilled Labor: \(L_s(t) = L[1 - (1 - s)e^{-\beta t}] \)
 - \(\beta = \text{speed of exogenous skill acquisition} \)
 - \(1 = n_0 \text{ (old GPT)} + n_1 \text{ (experimenting new)} + n_2 \text{ (new)} \)

- Arrival of new GPT:
 \[
 \lambda(n_2) = \begin{cases}
 \lambda_0 & \text{if } n_2 \leq \bar{n} \\
 \lambda_0 + \Delta & \text{if } n_2 \geq \bar{n}
 \end{cases}
 \]
 where \(\lambda_0 \) is small, \(\Delta \) is large and \(\lambda_1 \) is the arrival of successful experimentation

- Population dynamics:
 - \(\dot{n}_1 = \lambda(n_2)n_0 - \lambda_1 n_1 \)
 - \(\dot{n}_2 = \lambda_1 n_1 \)
• Early stage (A): \(n_1 + n_2 \) is too small to absorb \(L_s \Rightarrow \) integrated labor market with wage equalization, i.e.,
\[
(1-n_2)x_0 + n_1L_1 + n_2x_2 = L
\]

• Later stage (B): \(L_s \) is fully absorbed by \(n_1 \) and \(n_2 \) \(\Rightarrow \) segmented labor market with \(n_1L_1 + n_2x_2 = L_s \) and \((1-n_2)x_0 = L_u \)

2. Within-Group Inequality

• Machine lasts exactly two periods (with no depreciation within the two periods)
• Only a random fraction (\(\sigma \)) of workers get chance to adopt new GPT (crucial to create with-group heterogeneity)
• Continual adoption of new GPT yields higher productivity due to learning (at rate \(\tau \))
• By experience, learning of old GPT is more efficient (at rate \(\eta > \tau \))
• Production
 ○ new GPT: \(\nu_t = A_t x_{ot}^{1-\alpha} \)
 ○ old GPT: \(z_t = A_{t-1} [(1+\eta)x_{1t}]^{1-\alpha} \)

• Technology evolution: \(A_t = (1+\gamma)A_{t-1} \)

• Labor and Population Identity:
 ○ \(n_{ij} \) (transition from \(i \) to \(j \)) with \(i, j = 0 \) (new) or 1 (old)
 ○ \(x_0 = (1+\tau)n_{00} + n_{10} \)
 ○ \(x_1 = n_{01} + n_{11} \)
 ○ \(n_{00} + n_{10} + n_{01} + n_{11} = 1 \)

• Adaptability Constraints: \(\dot{n}_{00} \leq \sigma(n_{00} + n_{10}) \) and \(\dot{n}_{10} \leq \sigma(n_{01} + n_{11}) \)

• Steady-State Transition: \(n_{10} = n_{01} \)

• Consumption Efficiency: \(u(c) = \sum \beta^t \ln c \rightarrow 1 + r = \frac{1}{\beta} \frac{c_{t+1}}{c_t} = \frac{1}{\beta} (1 + \gamma) \)
Labor Demand:

\[w_0 = \frac{1+\gamma}{w_1} \left(\frac{x_0}{x_1} \right)^{-\alpha} \]

\[w_{00} = (1+\tau)w_0 \quad w_{10} = w_0 \quad w_{01} = w_{11} = w_1 \]

Labor Supply:

- **value functions:**
 - \(\nu_{i0} = w_{i0} + \beta \sigma \max(\nu_{00}, \nu_1) + (1-\sigma)\nu_1 \)
 - \(\nu_1 = w_1 + \beta \sigma \max(\nu_{10}, \nu_1) + (1-\sigma)\nu_1 \)

- **cases:**
 - when \(\nu_{10} < \nu_1 \), labor supply decision \(\Rightarrow x_0/x_1 = 0 \)
 - when \(\nu_{10} > \nu_1 \), labor supply decision \(\Rightarrow x_0/x_1 = \chi \)

- when \(\nu_{10} = \nu_1 \) \(\left(\frac{w_0}{w_1} = \Omega \right) \)
 - \(\nu_1 = w_1 + \beta \sigma \nu_1 + (1+\sigma)\nu_1 \)
 - \(w_1 = \sigma(1-\beta)\nu_1 \)

\(w_0 = \sigma[\nu_1 - \beta \nu_{00}] \), \(w_{00} = (1-\beta\sigma)\nu_{00} - (1-\sigma)\nu_1 \)
Labor Market Equilibrium

\[L^d = L^s \Rightarrow \frac{w_0}{w_1} = \frac{1 + \gamma}{(1 + \eta)^{1-\sigma} \sigma(1 + \sigma \tau)} \equiv \Phi(\gamma, \sigma, \eta, \tau) \]

Wage inequality within the skilled group:

- \[= \max \{\frac{w_{00}}{w_0}, \frac{w_{00}}{w_1}\} \]
- \[= \max \{\frac{w_{00}}{w_0}, \frac{w_{00}}{w_0} \frac{w_0}{w_1}\} \]
- \[= (1+\tau) \max \{1, \Phi\} \]
- in general, within-group inequality rises when GPT size (\(\gamma\)) \(\uparrow\), GPT learning (\(\tau\)) \(\uparrow\), and monopoly rent \(\uparrow\) (\(\sigma \downarrow\) or \(\eta \downarrow\))

Timing: even at the early stage (A) when skill premium is zero, within-group inequality can arise already

Problem: the underlying force driving within-group inequality is rather ad hoc
D. Skill Transferability and Residual Wage Inequality: Violante (2002)

- Stylized facts (US over the past 4 or 5 decades):
 - wage inequality increased sharply: 90%-10% ratio rose by over 40%, documented by Katz-Autor (1999)
 - despite an increase in skill premium/between-group inequality, the majority of the increase in wage inequality is residual, due to unobserved characteristics of workers in the same education and demographic group

- Previous studies on wage inequality focus on ex ante fixed innate ability
 - such as Acemoglu (1999), Caselli (1999), Aghion (2000), and Galor-Moav (2000)
 - counterfactually high persistency in inequality: Gottschalk-Moffitt (1994) find temporary components are as large as permanent ones

- Violante (2002) takes a deeper look at the data, finding that increased earning variability is due to:
 - more frequent job separation for a given turnover rate
 - more volatile dynamics of wages on the job and between jobs

- The above observations motivate the construction of a theory of inequality focusing on the accumulation and the transferability of specific human capital

- Key driving force: technology differences across machines of different vintages
1. The Basic Structure and Results

- Technology frontier advances at rate $\gamma > 0$
- Each machine has two periods of productive life and does not depreciate after the first period (as in Aghion 2000)
- A machine M_j of age j matched with worker of skill z produces output:
 \[y_j = (1+\gamma)^{-\theta_j} z \]
- Matching surplus sharing rule: ξ to worker and $1-\xi$ to firm
- Value functions:
 - value of employed:
 - with machine M_0: $V_0 = w_0 + \beta \max\{V_1, U\}$
 - with machine M_j: $V_1 = w_1 + \beta U$
 - value of unemployed: $U = \alpha V_0 + (1-\alpha)V_1$
 where $\beta =$ productivity-adjusted discount factor
 $\alpha =$ probability of meeting a new machine
- Separation decision for workers on new technologies: $\chi = \{0,1\}$
 - by construction, $w_0 > w_1$; thus, $U > V_1$
 - so if $\chi = 1$, we must have equal fractions of idle M_0 and M_1, i.e., $\alpha = 1/2$
- Wage inequality $\text{var}(\ln(w)) = [\theta \ln(1+\gamma)/2]^2 \sim [(\theta \gamma)/2]^2$, depending exclusively on the technology differences across machines of different vintages (γ)
2. Generalization: Vintage Human Capital

• A worker on \(M_j \) may move on \(M_{j'} \) with cumulated skills determined by the transferability process:
\[
z_{j'j} = (1+\gamma)^{\tau_{j'j'} - (\theta+1)}
\]
(following the adaptation structure in Aghion 2000)

 ○ the transferability of specific human capital is measured by \(\tau \)
 ○ equilibrium skill levels:

 - \(z_{01} = 1 \)
 - \(z_{00} = z_{11} = (1+\gamma)^{-\tau} \)
 - \(z_{10} = (1+\gamma)^{-2\tau} \)

• Productivity-adjusted wage:
\[
w_{ij} = (1+\gamma)^{-\theta j}
\]

• Value functions: change to \(V_{ij} \) based on \(w_{ij} \)

• Worker’s separation decision:
 ○ \(\tau \leq \theta \Rightarrow \chi = 1 \) for all \(\gamma \)
 ○ \(\tau > \theta \Rightarrow \chi = 1 \) for \(\gamma > \gamma_c \)

• Wage inequality:
\[
\text{var} (\ln(w)) = (\theta \gamma)^2 \text{var}(j) + \text{var}(\ln(z)) - 2\theta \gamma \text{cov}(\ln(z), j)
\]

 ○ higher \(\gamma \) increases \(\text{var}(\ln(z)) \) and \(\text{cov}(\ln(z), j) \), raising \(\text{var}(\ln(w)) \) if \(\chi = 0 \)
 ○ the effect of \(\gamma \) on \(\text{var}(\ln(w)) \) is ambiguous if \(\chi = 1 \)
3. Calibration

- Observation: residual wage inequality
Parameterization

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Moment to match (yearly average)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\gamma_L = .036$</td>
<td>growth of rel. price of equipment (< 1974)</td>
<td>Krusell et al. [2000]</td>
</tr>
<tr>
<td>$\gamma_H = .048$</td>
<td>growth of rel. price of equipment (> 1974)</td>
<td>Krusell et al. [2000]</td>
</tr>
<tr>
<td>$\theta = .7$</td>
<td>growth of real average wage = .024</td>
<td>Murphy and Welch [1992]</td>
</tr>
<tr>
<td>$\beta = .964$</td>
<td>rate of return on capital = .05</td>
<td>Cooley [1995]</td>
</tr>
<tr>
<td>$\kappa = 5$</td>
<td>labor share = .68</td>
<td>Cooley [1995]</td>
</tr>
<tr>
<td>$J = 28$</td>
<td>average age of equipment = 7.7</td>
<td>Bureau of Economic Analysis [1994]</td>
</tr>
<tr>
<td>$\lambda = .345$</td>
<td>wage growth within job = .03</td>
<td>Topel [1991]</td>
</tr>
<tr>
<td>$\tau = 1.90$</td>
<td>wage loss upon layoff = .23</td>
<td>Jacobson et al. [1993], Topel [1991]</td>
</tr>
<tr>
<td>$Z = 20$</td>
<td>transitory residual wage variance = .053</td>
<td>CPS data, Gottschalk and Moffitt [1994]</td>
</tr>
<tr>
<td>$\delta = .05$</td>
<td>separation rate from employment = .166</td>
<td>Blanchard and Diamond [1990]</td>
</tr>
</tbody>
</table>
Fitness of the Model

<table>
<thead>
<tr>
<th></th>
<th>Variance of log wages</th>
<th>Variance of technologies</th>
<th>Variance of skills</th>
<th>Covariance component</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DATA</td>
<td>MODEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\gamma_L = .035$</td>
<td>.053</td>
<td>.053</td>
<td>.008</td>
<td>.085</td>
</tr>
<tr>
<td>$\gamma_H = .048$</td>
<td>.089</td>
<td>.085</td>
<td>.014</td>
<td>.145</td>
</tr>
</tbody>
</table>

Average age of capital | Average skill level | Wage growth within-job | Wage loss upon layoff | Separation rate

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\gamma_L = .035$</td>
<td>7.700</td>
<td>11.086</td>
<td>.030</td>
<td>-.230</td>
</tr>
<tr>
<td>$\gamma_H = .048$</td>
<td>7.448</td>
<td>8.595</td>
<td>.044</td>
<td>-.305</td>
</tr>
</tbody>
</table>

4. Open Issues

- firm-specific technologies
- occupational mobility
- general vs. specific human capital
E. Human Capital Stratification

- In reality, households are stratified in various degrees by race, income, education and other socioeconomic indicators
- The Dissimilarity index (Duncan-Duncan 1955): using the 2000 Census data, most of the 30 largest Metropolitan Statistical Areas were highly stratified:

<table>
<thead>
<tr>
<th>Metropolitan Statistical Area (MSA)</th>
<th>Dissimilarity Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC-Baltimore, Detroit</td>
<td>0.70 or higher</td>
</tr>
<tr>
<td>Milwaukee, Cleveland, St. Louis, New York</td>
<td>0.60 - 0.69</td>
</tr>
<tr>
<td>Philadelphia, Cincinnati, Chicago, Indianapolis</td>
<td></td>
</tr>
<tr>
<td>Pittsburgh, Atlanta, Kansas City</td>
<td>0.50 - 0.59</td>
</tr>
<tr>
<td>Houston, Boston, Los Angeles</td>
<td></td>
</tr>
<tr>
<td>Tampa, San Antonio, Phoenix, Minneapolis</td>
<td>0.40 - 0.49</td>
</tr>
<tr>
<td>San Diego, Norfolk, San Francisco</td>
<td></td>
</tr>
<tr>
<td>Miami, Denver, Sacramento, Orlando</td>
<td>0.39 or lower</td>
</tr>
<tr>
<td>Dallas, Seattle, Portland</td>
<td></td>
</tr>
</tbody>
</table>
• It has been shown that since 1980, racial segregation in the U.S. has declined while economic segregation has risen
• Human capital and housing are believed the two primary sources of economic segregation

• Interactions
 ○ Local positive spillovers – in human capital evolution
 ○ Global positive spillovers – in goods production
• Human Capital and Education
 ○ human capital evolution: $h_{t+1}^i = \phi^i ((1 - u_t^i) h_t^i)^{\delta} (E_t^i)^{1-\delta}$
 ○ public education: $E_t^i = \tau_t^i \int y_t^i dG_t^i (y_t^i)$
• Output: $y_t^i = A(H_t)^{\alpha} (h_t^i)^{1-\alpha}$
• Combining the above relationships $\Rightarrow h_{t+1}^i = B^i (h_t^i)^{\delta} (H_t)^{\alpha(1-\delta)} (L_t^i)^{(1-\alpha)(1-\delta)}$, where L_t^i is a “local” human capital aggregator
2. Segregated vs. Integrated Equilibrium

- Segregated equilibrium features locational clustering by human capital/income
- Integrated equilibrium features mixture of groups with different human capital/income
- Two fundamental forces:
 - complementarity between \(L^i \) and \(h^i \) \(\Rightarrow \) segregation (assortative matching)
 - complementarity between \(H \) and \(h^i \) \(\Rightarrow \) integration (homogenizing)

3. Results

- Co-existence of segregated and integrated equilibria
- Integration lowers inequality as compared to segregation
- Integration lowers growth in SR but raises it in LR, because \(H \) has a larger scale effect in the long run
F. Income Inequality Across Space and Time: Acemoglu-Dell (2009)

- Stylized fact: large cross-country and within-country differences in per capita income
- Potential causes of such disparities:
 - differences in *human capital*
 - differences in technological know-how
 - differences in production efficiency due to various institutions and organizations

1. The Model

- Measure of inequality (municipal m in country j) by the Theil index:
 \[
 T = \sum_{j=1}^{J} \frac{L_j y_j}{L y} \left(\ln \frac{y_j}{y} \right) + \sum_{j=1}^{J} \frac{L_j y_j}{L y} \left[\sum_{m=1}^{M_j} \frac{L_{jm} y_{jm}}{L_j y_j} T_{jm} + \sum_{m=1}^{M_j} \frac{L_{jm} y_{jm}}{L_j y_j} \ln \left(\frac{y_{jm}}{y_j} \right) \right]
 \]

 where \(T_{jm} = \sum_{i=1}^{L_{jm}} \frac{y_{jmi}}{L_{jm} y_{jm}} \ln \left(\frac{y_{jmi}}{y_{jm}} \right) \) is the within-municipal m Theil index in country j

- Alternative measures: mean log deviation, variance/coefficient of variation, gini coefficient
Wage Inequality

<table>
<thead>
<tr>
<th></th>
<th>90/10</th>
<th>Theil Index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Between Country</td>
</tr>
<tr>
<td>Municipals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>actual pop weights</td>
<td>34.2</td>
<td>0.250</td>
</tr>
<tr>
<td>equal pop weights</td>
<td>28.6</td>
<td>0.285</td>
</tr>
<tr>
<td>Regions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>actual pop weights</td>
<td>36.7</td>
<td>0.203</td>
</tr>
<tr>
<td>equal pop weights</td>
<td>32.7</td>
<td>0.139</td>
</tr>
</tbody>
</table>

- more *within* than between country inequalities
- more inequality using *municipal* than region data
Decomposition of wage inequality measured by Theil index

<table>
<thead>
<tr>
<th></th>
<th>Overall Inequality</th>
<th>Residual Inequality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Municipals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>actual pop weights</td>
<td>0.265</td>
<td>0.067</td>
</tr>
<tr>
<td>equal pop weights</td>
<td>0.301</td>
<td>0.105</td>
</tr>
<tr>
<td>U.S.</td>
<td></td>
<td>0.050</td>
</tr>
</tbody>
</table>

- “residual” within-the-skilled-group inequalities account for a large portion of overall inequalities
- within-municipal disparities are most important for wage inequalities
- between-country disparities are important only for “non-residual” between-skilled-and-unskilled-group inequalities
- between-municipal disparities are never important
G. The Battle between the Top 1% and the Remaining 99%: Pikety (2014)

- Income inequality

- Wealth inequality
 - U.S. Wealth Inequality: https://www.youtube.com/watch?v=QPKKQnijnsM

- Capital In The 21st Century:
 - BBC: https://www.youtube.com/watch?v=HL-YUTFqtuI
 - ABC: https://www.youtube.com/watch?v=I05wLUuvQGM
Methodological issues:

- Piketty: r measures return to capital, g measures return to labor, so $r > g$ implies widened inequality
- Krusell-Smith (2015): Piketty’s $r > g$ theory works only with the unconventional definition of capital-output in terms of net capital (net of depreciation) and NNP
- Weil (2015): market value of tradeable assets are incomplete measures for productive capital and wealth, missing
 - value of human capital
 - transfer wealth
 - these omitted types of wealth are distributed more equally than tradeable assets
H. Wealth Inequality: De Nardi (2015)

- Cagetti-De Nardi (2006): over the past 3 decades in the U.S., top 1% own 1/3 of national wealth, top 5% more than 1/2 (see also an older literature led by Wolff 1992, 1998)
- Can typical models predict such a high concentration of wealth?

1. The Bewley (1977) Model of Permanent Income

- Infinitely lived agents with time-additive preferences:
 \[E\left\{ \sum_{t=1}^{\infty} \beta^t u(c_t) \right\} \]
 - u takes a CRRA form
 - Labor endowment subject to an idiosyncratic labor productivity shock z, taking finite number of values and following a first-order Markov process with transition matrix \(\Gamma(z) \)
 - A single asset \(a \) that may be used to insure against labor income risk
 - Production of a single good \(Y \) using K and L under a CRS technology
Household’s problem:

\[
V(x) = \max_{(c,a')} \left\{ u(c) + \beta E \left[V(a', z') \middle| x \right] \right\}
\]

s.t.

\[
c + a' = (1 + r)a + zw
\]
\[c \geq 0, \quad a' \geq a,
\]
- \(\alpha = \text{net borrowing limit}\)
- state \(x = (a, z)\)

- In a stationary equilibrium, the distribution of people with \((a, z)\) is constant
- Quantitative analysis by Aiyagari (1994): \(\log(\text{labor earning})\) follows AR(1) with autocorrelation = 0.6 and std dev of the innovations = 0.2

<table>
<thead>
<tr>
<th>% wealth in top</th>
<th>Gini</th>
<th>1%</th>
<th>5%</th>
<th>20%</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. data, 1989 SCF</td>
<td>.78</td>
<td>29</td>
<td>53</td>
<td>80</td>
</tr>
<tr>
<td>Aiyagari Baseline</td>
<td>.38</td>
<td>3.2</td>
<td>12.2</td>
<td>41.0</td>
</tr>
</tbody>
</table>

- wealth inequality largely underestimated compared to the 1989 Survey of Consumer Finance (not much improved even doubling std dev)

- Agents live for at most N periods, subject to survival probability s_t of surviving up to t conditional on surviving at $t-1$

- Lifetime utility:
 $$E\left\{ \sum_{t=1}^{N} \beta^t \left(\Pi_{j=1}^{t} s_t \right) u(c_t) \right\}$$

- Labor endowment is now age-specific: $e(z, t)$
 - again, z is Markov with transition $\Gamma(z)$
- No annuity, so people self-insure against earning risk and long life
- Those die prematurely leave accidental bequests
- Same production technology as in Bewley
- Household’s problem:
 $$V(a, z, t) = \max_{(c,a')} \left\{ u(c) + \beta s_{t+1} E \left[v(a', z', t+1) | z \right] \right\}$$
 $$c + a' = (1+r)a + e(z, t)w + T + b_t$$
 s.t.
 $$c \geq 0, \quad a' \geq a \quad \text{and} \quad a' \geq 0 \quad \text{if} \quad t = N$$
 - $T =$ lump-sum redistributed accidental bequests
 - $b =$ social security payments to the retired
Stationary equilibrium: similar to Bewley, with periodically balanced bequest transfers and government budget

Quantitative results:

<table>
<thead>
<tr>
<th>Transfer wealth ratio</th>
<th>Wealth ratio</th>
<th>Percentage wealth in the top 1%</th>
<th>Percentage wealth in the top 5%</th>
<th>Percentage wealth in the top 20%</th>
<th>Percentage wealth in the top 40%</th>
<th>Percentage wealth in the top 60%</th>
<th>Percentage with negative or zero wealth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989 U.S. data</td>
<td>.60</td>
<td>.78</td>
<td>29</td>
<td>53</td>
<td>80</td>
<td>93</td>
<td>98</td>
</tr>
<tr>
<td>A basic overlapping-generations Bewley model</td>
<td>.67</td>
<td>.67</td>
<td>7</td>
<td>27</td>
<td>69</td>
<td>90</td>
<td>98</td>
</tr>
</tbody>
</table>

- improved, but still far off for the top 1 or 5% wealth distribution

3. Wealth Distribution in Variations of the Bewley Model

- Benhabib-Bisin (2015): with intergenerational transmission and redistributive fiscal policy, the stationary wealth distribution is Pareto, driven critically by capital income and estate taxes
- Benhabib-Bisin-Zhu (2016): capital income shocks more important than labor income shocks

- Household’s value:

\[
V(a, t) = \max_{c, a'} \left\{ u(c) + s_t \beta E_t V(a', t + 1) + (1 - s_t) \phi(b(a')) \right\}
\]

- value from leaving bequest by providing a worm glow (enjoyment of giving a la Andreoni (1989):

\[
\phi(b(a')) = \phi_1 \left(1 + \frac{b(a')}{\phi_2}\right)^{1-\sigma}
\]

- overall bequest motive: ϕ_1
- bequest luxuriousness ϕ_2

- Two intergenerational linages:
 - human capital: inheritance in labor productivity
 - bequests
Quantitative results

<table>
<thead>
<tr>
<th>Transfer wealth ratio</th>
<th>Wealth Gini</th>
<th>Percentage wealth in the top 1%</th>
<th>5%</th>
<th>20%</th>
<th>40%</th>
<th>60%</th>
<th>Percentage with negative or zero wealth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989 U.S. data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.60</td>
<td>.78</td>
<td>29</td>
<td>53</td>
<td>80</td>
<td>93</td>
<td>98</td>
<td>5.8–15.0</td>
</tr>
<tr>
<td>No intergenerational links, equal bequests to all</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.67</td>
<td>.67</td>
<td>7</td>
<td>27</td>
<td>69</td>
<td>90</td>
<td>98</td>
<td>17</td>
</tr>
<tr>
<td>No intergenerational links, unequal bequests to children</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.38</td>
<td>.68</td>
<td>7</td>
<td>27</td>
<td>69</td>
<td>91</td>
<td>99</td>
<td>17</td>
</tr>
<tr>
<td>One link: parent’s bequest motive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.55</td>
<td>.74</td>
<td>14</td>
<td>37</td>
<td>76</td>
<td>95</td>
<td>100</td>
<td>19</td>
</tr>
<tr>
<td>Both links: parent’s bequest motive and productivity inheritance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.60</td>
<td>.76</td>
<td>18</td>
<td>42</td>
<td>79</td>
<td>95</td>
<td>100</td>
<td>19</td>
</tr>
</tbody>
</table>

- unequal bequests do not matter
- both intergenerational links matter to top group wealth distribution

- Agents are altruistic and face uncertainty about death time
- Occupational choice: workers vs. entrepreneurs
 - entrepreneurial production with working capital k and ability θ:
 \[f(k) = \theta k^\nu + (1 - \delta)k \]
 - working capital subject to borrowing constraints, so $k = a + b(a)$, with borrowing b depending on asset collateral a
- Quantitative findings:

<table>
<thead>
<tr>
<th>Wealth Gini</th>
<th>Fraction of entrepreneurs</th>
<th>Percentage wealth in the top</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td></td>
<td>1%</td>
</tr>
<tr>
<td>0.78</td>
<td>10%</td>
<td>29</td>
</tr>
<tr>
<td>Baseline model with entrepreneurs</td>
<td>0.8</td>
<td>7.50%</td>
</tr>
</tbody>
</table>

- over-estimation in top 5% wealth share especially under a smaller share of entrepreneurs