Multiple Band Structures in 131Nd and 130Nd.1 W. RE-VIOL, H.Q. JIN, L.L. RIEDINGER, B.H. SMITH, N.P. YODER, University of Tennessee, A. GALINDO-URIBARRI, Oak Ridge National Laboratory, D.G. SARANTITIES, D. LAFOSSE, J.N. WILSON, Washington University, S.M. MULLINS, Australian National University —

Rotational bands have been assigned to the neutron-deficient nuclei 130,131Nd through the analysis of a Gammasphere plus Microball experiment at Berkeley, using the ^{40}Ca on ^{94}Mo reaction at 180 MeV. Whereas we have analyzed the exit channels with 3 protons leading to light Pr isotopes, here we report on the results for the 2p gated gamma-ray data, which are dominated by 130,131Nd. The new level scheme for 131Nd consists of four bands, significantly extending the earlier data2, which we assign to the $7/2^+[523]$, $5/2^+[402]$, $1/2^+[411]$, and perhaps $1/2^+[541]$ neutron configurations. The observed signature splitting in the last one is much smaller than expected for a $1/2^+[541]$ orbital. Calculations to address this issue will be presented. In addition to the yrast band of 130Nd,3 we assign bands built on the high and low K couplings of the $7/2^+[523]$ and $5/2^+[402]$ orbitals, the γ-vibrational band and one other sequence. Besides these normal-deformed bands, we also observe one band of enhanced or super deformation in each case.

1Supported by the U.S. Department of Energy.
2D. Watson, University of Liverpool Annual Report (1987/88).

Walter Reviol
wreviol@utk.edu
University of Tennessee
Member ID: M60007870

Date submitted: January 19, 1998
Electronic form version 1.2