Language Shapes Public Attitudes Toward Gender Equality

Efrén O. Pérez
Vanderbilt University

Margit Tavits
Washington University in St. Louis

This draft: July 2016
First draft: November 2014

Abstract

Can the way we speak affect the way we think about gender equality? Languages vary by how much they require speakers to attend to gender. Genderless tongues (e.g., Estonian) do not oblige speakers to designate an object’s gender, while gendered tongues do (e.g., Russian). By neglecting to distinguish between male and female objects, we hypothesize that speakers of genderless tongues will express more liberalized attitudes toward gender equality. We support this claim with two survey experiments that randomly assigned the interview language to Estonian/Russian bilinguals, and a cross-national analysis of language effects on survey responses. Our evidence yields two main conclusions. First, speaking a genderless tongue reliably increases support for policies and efforts to combat gender imbalances. Second, language guides people’s views about gender equality only when social norms about acceptable behavior are absent.

Acknowledgments

We are grateful to the Weidenbaum Center at the University of Washington in Saint Louis and Vanderbilt University for generously funding some of the research reported here. For their constructive feedback and helpful reactions to this project, we also thank participants at the 2014 MPSA, and in research colloquia at Arizona State University (2015), Columbia University (2015; 2016), Princeton University (2016), UC San Diego (2015), UNC-Chapel Hill (2015), University of Iowa (2015), the University of Maryland (2016), and Yale University (2016). This paper was previously circulated as “His and Hers: How Language Shapes Public Attitudes Toward Gender Equality.”
Many women across different nations still lag behind men in several domains (Blau, Brinton, Grusky 2006; OECD 2012), particularly in politics, where they are woefully under-represented and under-placed (Hinojosa 2012; O’Brien 2015; O’Brien and Rickne 2016; Paxton et al. 2010). One line of investigation suggests that patriarchal attitudes and beliefs promote and maintain gender inequality (Epstein 2007; Inglehart and Norris 2003; Iversen and Rosenbluth 2010), with asymmetrical attitudes toward females affecting women’s political representation (Huddy and Terkildsen 1993; Sanbonmatsu 2002) and economic opportunities (Fortin 2005), even in highly developed societies. Nevertheless, this research has difficulty explaining where these sentiments arise from in the first place and why they persist.

Part of the answer, we believe, has to do with the language one speaks. Languages vary by the degree to which they require speakers to attend to and encode gender (Boroditsky et al. 2003; Corbett 1991; Cubelli et al. 2011; Vigliocco et al. 2005). Genderless languages, such as Estonian or Finnish, do not require speakers to designate the gender of objects—even the word for “he” and “she” is the same in these tongues. In contrast, gendered languages, like Spanish and Russian, require speakers to differentiate genders and assign it to objects. Spanish speakers, for instance, must mark the object “moon” as feminine by using the definite article la, as in la luna. Russian speakers face an even more demanding task. To say, for example, “a yellow

1 Languages can also fall somewhere in between these two extremes in the extent to which they contain gender markings (Dryer and Haspelmath 2013). For example, English is only weakly gendered: although it uses gendered pronouns, it does not require speakers to assign gender to objects. According to the World Atlas of Language Structures, in 19 of the 141 countries covered, the dominant language is genderless, and in 39 it is gendered; the remaining languages contain varying degrees of gender markers.
moon shone in the sky” (желтая луна сияла в небе), they must designate the “moon,” the color “yellow,” and the verb “shone” as feminine. Such grammatical rules make gender a highly salient category for speakers.

If language sets a frame of mind for how people think, then differences in gender markings across languages might partly account for individual differences in attitudes about gender equality. Cognitive psychologists have found that language subtly, but powerfully, affects human thinking (Boroditsky 2001; Boroditsky and Gaby 2010; Boroditsky et al. 2003; Fuhrman et al. 2011; Slobin 1996), which opens the door to possible language effects on political opinions. We theorize that speaking a genderless tongue helps to promote greater perceived equity between men and women by neglecting to formally distinguish between male and female objects. Speakers of such languages are likely to find it harder to perceive a “natural” asymmetry between the sexes. This, in turn, affects people’s opinions about gender equality, where speakers of genderless tongues express more support for political efforts seeking to rectify gender imbalances.

In addition to outlining how language might impact attitudes toward gender equality, we also theorize about when its influence is less likely. Some research suggests that language has a stronger grip on thinking if the domain in question is more abstract—that is, if sensory information is constrained or inconclusive (Boroditsky et al. 2003; Echterhoff 2008; Phillips and Boroditsky 2003). We adapt this insight to politics and predict that language is less likely to matter when strong social norms exist about appropriate behavior, thus leaving less room for language to further affect one’s opinions about gender inequality.

We test our claims with two original survey experiments that randomly assigned the interview language to bilingual adults in Estonia who speak equally well a gendered (Russian)
and a genderless (Estonian) language. This parsimonious design lets us clearly identify the effect of speaking a gendered or genderless language on people’s views about gender equality (Dunning 2016; Green 2004). We then validate and extend our experimental findings on language by undertaking a cross-national analysis of survey data.

Consistent with our theory, we find that interviewing in a genderless tongue meaningfully affects people’s attitudes about gender equality. Respondents who were assigned to interview in Estonian express more liberalized attitudes compared to respondents who were assigned to interview in Russian: a result that is also borne out by our cross-national examination of survey data. Critically, these language effects emerge only when a policy or initiative touches on a domain where normatively appropriate behavior is unclear, with a placebo test further showing that such language effects are confined to domains that clearly evoke gender.

Our findings provide new insights into the persistence of gender inequality – one of the most fundamental social divides (Epstein 2007). We reveal that simple quirks in language can impose important constraints on one’s view of gender roles and affect how mentally receptive people can be to efforts toward eliminating gender inequalities. More generally, our study highlights the potential benefits of borrowing insights from cognitive science to better understand important questions in politics. While we explore the effect of just one linguistic nuance – grammatical gender – the broader implications of our findings for social scientists are arguably more far-reaching. If the language we speak can influence how we construct reality, as our results imply, then it behooves political scientists and sociologists to further explore how other linguistic differences might shape mass opinion, pushing forward research in various areas. For example, better understanding how language shapes thought can advance research in political and social psychology by broadening our understandings of attitude formation and
change (Taber and Young 2013). Greater knowledge of language effects on people’s attitudes, behavior, and preferences can also shed new light on cross-country variation in policy choices and outcomes (Dalton 2014), relations between ethnic groups (Horowitz 1985), international interactions (Bueno de Mesquita and Smith 2012), and many other phenomena. Finally, scholars can advance research on political culture by using linguistic nuances as a way to systematically analyze and quantify cultural effects (Almond and Verba 1963).

Theory: How Language Affects Attitudes about Gender Parity

The notion that language shapes thinking is often associated with Benjamin Whorf, who proposed that people’s thoughts are completely determined by the tongue that they speak (Boroditsky et al. 2003). Although many researchers have found Whorf’s hypothesis untenable and unfalsifiable, a new generation of scholars has rehabilitated his claim into weaker but still important and testable versions (cf. Boroditsky 2001; Fuhrman et al. 2011; Marian and Neisser 2000; see also Kay and Kempton 1984; Lakoff 1987). Key to this refashioning is Slobin’s (1996) notion of “thinking for speaking,” which argues that languages vary in their grammatical organization, thereby obliging speakers to focus on different aspects of their experience when using a given tongue. For example, in order to say “the child ate the ice cream” in English, one must include the past tense. But to utter the same phrase in Russian, one must include the past tense, note the child’s gender, and state whether the child ate all or some of the ice-cream. Thinking for speaking is therefore very distinct for Russian and English speakers.

Slobin’s framework implies that varied language speakers may be biased toward attending to those aspects of the world that their tongue demands (Boroditsky 2001). If speaking a language requires one to make certain distinctions between objects (e.g., different colors, gender, and time orderings), then the speaker may take for granted that these categories actually
exist in the world and are relevant (Boroditsky 2001; Boroditsky et al. 2003; Boroditsky and Gaby 2010; Danziger and Ward 2010; Fuhrman et al. 2011; Hunt and Agnoli 1991). Hence, grammatical differences between tongues provide a mechanism through which language shapes thought, where a grammatical habit of speech leads to a habit of mind.2

Most important for our purposes are the grammatical distinctions that languages make with respect to gender. Gendered languages have grammatical structures that train speakers to focus on gender, while non-gendered tongues do not force speakers to make these distinctions. Careful research reveals that speakers of gendered languages are more keenly aware of gender differences: they are more likely to categorize the world in feminine and masculine terms and to project gender features onto objects and individuals (Boroditsky et al. 2003; Cubelli et al. 2011; Konishi 1993; Phillips and Boroditsky 2003; Sera et al. 1994).3 Gendered language speakers are also more likely to attain their own gender identity sooner than speakers of less gendered tongues.

2 The argument here is not about vocabulary or other superficial differences between languages. Rather, we are concerned with fundamental concepts, like gender, that have been made part of grammar (Lakoff 1987). Such grammatical concepts “are used in thought, not just as objects of thought,” and they are used automatically and unconsciously, thus producing a significant “impact on how we understand everyday life” (Lakoff 1987, 335; see also Lakoff 1996).

3 For example, when Russian speakers were asked to personify days of the week, they generally personified grammatically masculine days as males and grammatically feminine days as females (Jakobson 1966). Relatedly, young Spanish speakers generally rated object photos as masculine/feminine according to their grammatical gender (Sera et al. 1994).
(Guiora et al. 1982). Accumulated work also reveals that language effects like these arise from structural (i.e., grammatical) differences between tongues, and that they do so on both linguistic and non-linguistic tasks, which indicates that language can impact cognition with little to no verbalization (Fuhrman et al. 2011; Fausey and Boroditsky 2011).

Building on these psychological insights, we argue that people’s views about gender equality are affected, in part, by how gender is dealt with by their language on an everyday basis. Gendered tongues require people to explicitly distinguish between males and females, which should strongly activate gender as a concept in memory and make it more mentally accessible (Lodge and Taber 2013). This is crucial, since leading models of survey response suggest that rather than having pre-formed opinions on all matters, individuals construct their opinions on the basis of those considerations “at the top of the head” (Zaller 1992; Tourangeau et al. 2000). Speakers of gendered languages are therefore sensitized to the feminine or masculine qualities of individuals or objects, which is why they are likely to perceive gender differences as more salient and the roles of men and women as more distinct and divided.

We expect the opposite among speakers of genderless tongues. These languages minimize gender’s salience as a significant category by not requiring its speakers to make

4 Guiora et al. (1982) studied children, ages 16-42 months, who spoke tongues varying by their gendered-ness: Hebrew (highly gendered), English (medium gendered), and Finnish (genderless). By 28-30 months of age, 50% of Hebrew speakers expressed gender identification compared to 21% of English speakers and 0% of Finnish speakers.

5 For example, researchers have taught individuals fictitious languages that are completely stripped of any cultural or other contextual information and found that that these tongues still affect individual behavior in predicted ways (Boroditsky et al. 2003).
distinctions on this basis. Therefore, speakers of genderless languages are less likely to perceive
gender differences and more likely to see the roles of men and women as similar. If our
reasoning is correct, then this variation in gender’s salience should be reflected in people’s
opinions about gender equality. Specifically, we hypothesize (H1) that speakers of genderless
tongues will express less stereotypical and more liberalized opinions about women’s place in
politics and society. We also expect to find greater support for political efforts to combat gender
inequality among speakers of a genderless rather than gendered tongue. The implication here is
that a tongue’s genderedness plays a crucial role in shaping public opinion.

While our argument so far strongly suggests that language is likely to affect one’s views
of gender equality, it is also reasonable to expect that language may not always matter. Prior
work reveals that language effects are more likely in situations lacking a universal understanding.
These include domains that are abstract, rather than concrete; and domains where direct sensory
information is inconclusive, rather than dispositive (Boroditsky 2001; Echterhoff 2008; Winawer
et al. 2007). Clear and widely shared cues, then, provide additional, non-linguistic information
that can drown out language effects (Boroditsky 2000, 2001).

Adapting these insights to politics, we theorize that language will fail to affect opinions
about gender equality when stronger norms exist about socially acceptable behaviors or beliefs
(H2). Such norms equip people with more information about a topic (i.e., provide a common
understanding), thus leaving less space for language to affect people’s judgments. When social
norms are weak or absent, language will shape one’s political thinking by filling these
information gaps. For example, we might expect language to have a trivial impact on whether
one thinks it is sometimes justified for a woman to hit her husband, given a social norm against
aggression, regardless of whether its target is female or male. But we would expect language to
influence whether more women should be recruited to top government posts because it is less clear what the social consensus is on such a matter.

Research Design

We test our claims across three independent studies. Study 1 consists of an original survey experiment we administered in Estonia from May 26 to June 12, 2014. Here, twelve hundred (N=1,200) Estonian-Russian bilingual adults were randomly assigned to interview in Estonian (i.e., a genderless tongue) or Russian (i.e., a gendered tongue). Study 2 is a smaller experiment (N=262) that uses the same design and replicates and extends our initial findings from Study 1. We conducted this second study from March 22 to April 10, 2016. These experiments provide a compelling and straightforward between-subjects design for identifying language effects (Dunning 2016; Green 2004).

Estonia is an ideal setting for testing our hypothesis for several reasons. First, it possesses a sizeable population that is equally proficient in a gendered (Russian) and a genderless (Estonian) language: about 69% of the population identify Estonian and 29% Russian as their first language. Roughly 44% of the former group and 36% of the latter speak the other language well enough to qualify as bilingual according to our definition. Second, prior research shows

6 Given the novelty of this first study, we wanted to ensure that our survey experiment had enough statistical power to detect non-trivial opinion differences. Mean differences with Cohen’s $d = 0.20$ and two-tailed $p < 0.05$ require $N = 1,054$. Our sample ($N = 1,200$) can therefore unearth meaningful language effects, in either direction, if they in fact exist.

7 While its current official language is Estonian, the country was part of the USSR until 1991, which made Russian a prominent tongue, with most Estonian speakers acquiring at least a working knowledge of Russian and many becoming proficient. A large-scale immigration of
that in terms of political opinions and values, Estonians and Russians in Estonia have more in common with each other than with any other group outside Estonia (Lauristin and Vihelem 1997; Maimone 2004). Russians in Estonia do not express more traditional or conservative values than Estonians do. We demonstrate this with our own placebo test in Study 2. This makes Estonia a uniquely ideal setting to cleanly identify language effects in public opinion.8

Study 3 further alleviates any concerns over the generalizability of the findings from our Estonian experiments. This last study is a cross-national analysis of survey data from the World Values Survey (WVS) designed to appraise the external validity of our experimental results. We now describe in further detail each study and its relevant results.

Study 1: Survey Experiment with Estonian-Russian Bilinguals

Eligible bilinguals were identified with self-rated skill in Estonian and Russian. Bilingual respondents who said they “can understand, speak, and write” or are “fluent” in both languages Russians before 1991 also created a sizeable Russian-speaking population that acquired proficiency in the official language – Estonian. Segregated communities, inter-marriages, and schools offering general education (equivalent to K-12) in either Estonian or Russian further increased the bilingual population.

8 One might argue that Finnish and Swedish speakers in Finland offer another possible research site for this study. While Finnish (which is very close to Estonian) is clearly a genderless language, the status of Swedish as even weakly gendered language is questionable. While Swedish has two grammatical genders, these are not masculine and feminine but “neuter” and “common gender.” Furthermore, Sweden has been using a gender-neutral pronoun (“hen”) since 2012, and formally adopted it in 2015 (Senden et al. 2015). This does not allow for a clean design based on grammatical gender.
were randomly assigned to interview in Estonian or Russian. Supplementary Information (SI) section SI.1 provides further details about the identification of bilinguals and the survey protocol, including our language manipulation and English translations of question wording.

Thirty-eight percent (38%) of our sample consists of bilinguals whose first language is Russian, and who, on average, learned Estonian at the age of fifteen. In turn, those bilinguals in our sample (62%) whose first language is Estonian learned Russian, on average, at the age of fourteen. Finally, sixty-one percent (61%) of our respondents are female, with a median age of 52 and secondary level of education. We collected information on these and a few other demographic characteristics of each respondent pre-treatment. These variables are balanced across our experimental conditions (see SI.2).9

Attitudinal Measures of Gender Equality

Post-treatment, respondents answered several items related to their perceptions of women and their role in society and politics, which we describe below (full item wording is in SI.1). We constructed these items on the basis of prior research on attitudes about gender, and several of them are adapted from well-established national or international surveys such as the General Social Survey and the Americas Barometer. Our items are designed to tap attitudes about gender roles and gender bias in several ways, including: (a) those expressed in gender stereotypes, which foster unequal perceptions of men and women (Bauer 2015; Dolan 2014; Koch 2002); (b) preferences over women’s participation in politics and political leadership roles, where females

9 By design, our respondents are a subset (but not a random sample) of highly bilingual Estonian adults who were randomly assigned to interview in Estonian or Russian in a phone survey. We did not calculate sample weights since we are only interested in estimating the causal effect of our manipulation in this research setting.
are substantially underrepresented (O’Brien 2015; O’Brien and Rickne 2016); and (c) support for policies aimed at changing norms that promote gender equality. For our policy items, we picked issues that are salient and topical in Estonian public discourse. More specifically, we included the following questions about women and politics, which serve as our dependent variables.

Emotional women and *Emotional men* are seven-point scale ratings of how emotional (keyed as 7) vs. rational (keyed as 1) bilinguals believe men and women to be, with the item order randomized. We use these ratings in two ways. First, we analyze them individually and in their original format (variable names *Emotional women: single rating* and *Emotional men: single rating*). Second, we difference these ratings to create a measure ranging from -6 to 6, where positive values indicate greater stereotypical belief in women as emotional (relative to men) (variable name *Emotional women: relative rating*) (cf. Kinder and Kam 2009).

Paternity leave queried bilinguals about whether they agreed (keyed as “1”) or disagreed (keyed as “0”) with a proposed change in family leave policy that would allow a father to stay home, while the mother can return to work as soon as she is able to. (The current legislation allows the father to stay home only after the baby is at least 70 days old.)

Female Defense Minister asked bilinguals “If the party that you normally like nominated a generally well-qualified woman to be Minister of Defense, would you support that choice?,” with support coded as “1” and opposition as “0.”

Female political recruitment and *Female candidates: men’s expense* are items that bilinguals answered in random order. The former asked whether one strongly disagreed (4), somewhat disagreed (3), somewhat agreed (2), or strongly agreed (1) that women should be recruited to “top-level government positions.” Using the same response scale, bilinguals also reported the degree to which political parties should be required “to reserve some space on their
lists of candidates for women, even if they have to exclude some men.” These items are left in their raw metric and coded so that higher values reflect greater agreement with a statement.

Finally, Buy sex, Child suffers, Hit husband, and Men better are agree/disagree items that allow a test of our proposed boundary condition: i.e., language effects are less likely when clearer social norms suggest acceptable behavior. Buy sex first informed bilinguals that “Under the current law, ‘pimping’ is a criminal act but buying sex is not,” then asked them whether they agreed/disagreed that “buying sex should also be made illegal.” Child suffers asked bilinguals whether they agreed/disagreed that “a preschool child is likely to suffer if his or her mother works.” Hit husband queried about whether “it is sometimes justified for a woman to hit her husband,” while Men better asked whether “on the whole, men make better political leaders than women do.” We see these items as strongly implying appropriate behaviors: e.g., “buying sex is wrong,” “mothers should stay home with toddlers,” etc. For all of these items, agreement is coded as “1” and disagreement as “0.”

Results from Study 1

We first examine whether interviewing in Estonian (genderless tongue) affects how much asymmetry people perceive between men and women in terms of gender stereotypes. Accordingly, we estimate the degree to which Estonian interviewees see less stereotypical differences between men and women, where the dependent variable is the differenced ratings of females and males as more emotional than rational (variable name Emotional women: relative rating). On this relative measure, higher values reflect individual views of women as more emotional than men, with the scale midpoint indicating no sensed difference between men and women on this stereotypic trait.
We find that interviewing in Estonian significantly reduces how emotional women are seen relative to men. The mean value for respondents interviewing in Russian is 1.34 (CI: 1.17, 1.52) and in Estonian 1.14 (CI: 0.98, 1.30), for a difference in means: $t = 0.2, p = 0.09$, two-tailed test. We also performed a regression analysis, presented in the first column of Table 1 to confirm this result. These results support hypothesis 1. After using randomization to hold constant all other (un)observed differences between respondents interviewing in Estonian vs. Russian, the former are still less likely to perceive women as more stereotypically emotional than men.

We now look at whether this cognitive mechanism travels to the political domain and affects people’s opinions about gender equality by estimating the effect of interviewing in Estonian on our other dependent variables: *Paternity leave, Female Defense Minister,* and *Female political recruitment.* We reason that if, in fact, a genderless tongue leads its speakers to perceive less asymmetry between men and women, then respondents interviewing in Estonian should be more supportive of paternity leave, because men and women can both care for a child. Similarly, respondents interviewing in Estonian should be more likely to back a female nominee for Defense Minister, since a qualified woman can just as well fulfill a political post traditionally occupied by men; and, Estonian interviewees should endorse greater female political recruitment at a higher level, because capable women, like men, can also be effective politicians.

10 Given our experimental design, we prefer to estimate our treatment effects by regressing each dependent variable on the randomly assigned language of interview. However, Table SI.3.1 shows that these estimated treatment effects remain largely intact if we adjust them for individual differences in age, education, and gender.
As the last three columns of Table 1 indicate, this is indeed what we find. Given the non-linear nature of these estimates, we delve more deeply into the substance of these results by translating the raw coefficients into predicted probabilities that we present graphically in Figure 1. Panel A (Figure 1) shows the shift in the probability of supporting changes in paternity leave policy. Among respondents assigned to interview in Russian, the probability of supporting this policy change is 35%. But if a person is assigned to interview in Estonian, the probability of endorsing this proposal climbs reliably by 8 points to 43% (first difference (FD) = 0.08, CI: 0.02 to 0.14). Thus, simply by interviewing in a genderless tongue, respondents are significantly more supportive of a parental leave policy that is more gender balanced.

[INSERT FIGURE 1 ABOUT HERE]

Turning to panel B, when asked whether respondents would endorse their party’s nomination of a female for the position of Defense Minister—a post typically occupied by males—the probability of supporting this nomination among those assigned to interview in Russian is 65%. But when assigned to report a response to the same question in a genderless tongue, the probability of endorsing a female’s nomination for Defense Minister increases to 73%, which is a reliable 8-point shift in support (FD = 0.08, CI: 0.02, 0.13). Hence, interviewing in a genderless tongue also makes a female nominee for Defense Minister discernibly more palatable to respondents.

A comparable pattern emerges when we consider increasing the profile of women in the higher echelons of government more generally. As panel C illustrates, respondents interviewing in Russian have a 23% probability of strongly agreeing with greater efforts to recruit females to top government positions. But for respondents interviewing in Estonian, the probability of
strongly agreeing with the same proposal climbs to 28%, for a reliable 5-point shift in support (FD = 0.05, CI: 0.01, 0.09).11

Overall, we deem these results strong for two reasons. First, social psychologists have shown that a person’s native language can impact their thinking in other tongues (Phillips and Boroditsky 2003). Since our bilingual respondents acquired one of their languages before the other one, it should be especially hard for us to uncover language effects like the ones we have found. Second, unlike prior laboratory studies on language, we unearth our language effects in a large and heterogeneous survey sample where the treatment was administered by phone. The fact that we observe the influence of language on political thinking in this new research setting enhances the external validity of prior language effects research (Campbell and Stanley 1963), thereby bolstering the claim that language affects human cognition.

Robustness

To further bolster our conclusions, we assessed the robustness of our results in three ways (see SI.3). First, we re-estimate our treatment effects by including subjects’ age, education, and gender as covariates in our regression analysis. Including these pre-treatment variables yields treatment effects that are similar to those reported in the main analysis (Table SI.3.1). Second, we demonstrate that our estimated language effects are unaltered if we adjust them for subject’s preferred interview language (Table SI.3.2). This further suggests that our language effects are situational, arising from random assignment to interview in a certain language, independent of any influence brought to bear by subjects’ inclination to interview in a specific tongue. Finally, 11In SI.4 we further demonstrate that the effect of speaking a genderless tongue stems from de-emphasizing distinctions between women and men (i.e., gender-blindness), rather than promoting females or devaluing males (i.e., pro-female bias).
since all of our interviewers were female (see SI.1 for more on the interview protocol), we tested for the possibility that our interviewers lead male (female) subjects to express stronger anti-female opinions because they feel that women “should not” be working in visibly public roles, like interviewing survey subjects. If this is true, then subjects’ gender should consistently moderate the effect of interview language on opinions. We find that it does not (Table SI.3.3).

Boundary Condition: When Are Language Effects Less Likely?

We now take a further step and probe whether there are cases when the language effects just described do not occur. To this end, we test our second hypothesis according to which language effects are less likely to emerge when strong social norms exist about appropriate behavior. Specifically, we analyze the effect of genderless language on four items that we believe are attended by strong social norms: *Buy sex, Child suffers, Hit husband*, and *Men better*. If our reasoning is correct, then we should observe negligible differences between the opinions of Estonian and Russian interviewees on each of these items. Figure 2 depicts the relevant results (Table SI.5 contains the raw estimates). As expected, across each of these items, respondents interviewing in Estonian are just as likely as those interviewing in Russian to agree that “buying sex should be made illegal” (panel A), that a “child suffers if the mother works” (panel B), that “it is sometimes justified for a women to hit her husband” (panel C), and that “men are better political leaders than women” (panel D). In other words, the interview language has no influence on respondents’ judgment if the domain in question is attended by clearer social norms.
about appropriate behavior. This suggests that while language can affect some of what people think about gender inequality, it does not influence all of their views on this broad topic.12

\textbf{Study 2: Replication Experiment with Estonian-Russian Bilinguals}

In order to bolster faith in Study 1’s results, we conducted a second experiment with three goals in mind. First, we sought to replicate some of the effects from Study 1 in order to be more confident that these results were not flukes. Second, while our failure to find any language effects in the presence of stronger social norms is highly suggestive of a boundary condition, our inference here rests on null findings. Study 2 manipulates these norms directly, allowing for a stronger test of this aspect of our theory. Finally, Study 2 includes a placebo test to demonstrate that language fails to affect opinions that do not directly evoke gender distinctions.

Within resource constraints, we again partnered with the same survey firm from Study 1 to run a new experiment (N=262). Our smaller sample here comes with a reduction in statistical power, from Study 1’s bountiful 0.90 to a more modest 0.60 in this new study. This decrease is partly offset by the results of Study 1, which yield directional hypotheses that we test here with one-tailed significance tests. At this power level, then, detecting mean differences with Cohen’s $d = 0.20$ and one-tailed $p < 0.10$ requires $N = 238$.13

12 These null results do not appear to stem from poorly designed survey questions. The bottom panel of table SI.3.3 shows that these items are associated with individual differences in age, education, and gender in theoretically intuitive ways.

13 This reduced power level means the odds of failing to reject the null hypothesis when it is \textit{false} grow from 1 in 10 times (Study 1) to 2 in 5 times (Study 2), which works against uncovering meaningful effects in this new sample.
The setting, recruitment, and type of participant for Study 2 were the same as in Study 1. Our question battery re-administered our Paternity leave, Female Defense Minister, and Female political recruitment items, thus ensuring a fresh test of Study 1’s core results. To this slate, we added a question-wording manipulation that directly tests our social norms hypothesis. This experiment contained two conditions. In the first, subjects were asked their degree of agreement in “calling on party leaders to encourage more women to run for office” (Run for office). This item is similar in spirit to the items where we have so far found effects, and we expect to find one here. The second condition is identical in wording to the first, except that it concludes by describing this effort as “a proposal that about 80% of the people in Estonia favor.” If our reasoning is correct, then any language difference that we observe in the first condition should decline, if not vanish, in this second condition, which makes a social norm salient.

Finally, as a placebo, we asked respondents to indicate how justifiable they think suicide is, with 1 being “never justifiable” and 10 being “always justifiable.” Since gender is not (in-)directly referenced by this item, we do not expect a language effect here. This item also lets us probe an alternative explanation for our language effect: that speaking a language activates ideological thinking. For example, one might argue that respondents assigned to speak Estonian support gender equality more not because of the grammar distinction we propose, but because speaking Estonian primes respondents to think in more socially liberal terms. If this is the case,

14 See SI.1 for the interviewer script that we used for the treatment.

15 The response options were (1) strongly disagree, (2) somewhat agree, (3) somewhat agree, and (4) strongly agree. See SI.1 for precise question wording for the new items introduced in Study 2.

16 As Tables SI.6.1 and SI.6.2 show, we again find evidence suggesting an effective randomization and a lack of large and systematic imbalances in pre-treatment covariates.
then respondents interviewing in Estonian should also be more likely to find suicide justifiable – a position that is opposite to the religious-conservative stance against suicide.

Results from Study 2

Table 2, under the label “Replication,” reports Study 2’s results. The evidence there is generally consistent with our main hypothesis: being assigned to interview in Estonian increases support for policies and efforts to address gender inequality. In particular, assignment to interview in Estonian significantly boosts support for a more flexible paternity leave policy ($0.41, p<0.01$, one-tailed); reliably increases respondents’ backing of a female defense minister ($0.26, p<0.08$, one-tailed); and also appears to bump up support for greater female political recruitment, though this last effect is unreliable ($0.01, p<0.48$, one-tailed). Crucially, this general trend is robust to an alternative configuration of these three indicators. If we combine these items into a counter variable where a score of “1” is assigned to each liberal response that respondents give to each of these three questions, we find that interviewing in Estonian still positively and reliably boosts scores on this omnibus measure ($0.42, p<0.01$, one-tailed). We interpret this evidence as indicating that the language effects we uncovered in Study 1 are unlikely to have been outliers.

17 The correlations between these indicators are positive and modest (average $\rho = 0.14$), but their magnitude is likely larger in the absence of measurement error, which is present here. For this exercise, the item *Female political recruitment* was dichotomized to align with the structure of the other two items.
assigned to interview in Estonian are, just as we predict, reliably more supportive of “calling on party leaders to encourage more women to run for office” (0.36, \(p < 0.05 \), one-tailed). However, in the presence of normative information—that is, when respondents are told that 80% of Estonians favor this proposal—the effect of interviewing in Estonian drops in size and significance (0.22, \(p > 0.16 \), one-tailed). Thus, salient social norms undercut the impact that language would have had on people’s opinions about gender equality.\(^1\)

The last column in table 2, labeled “Placebo Test,” contains the results for our item gauging opinions toward suicide. There we can see that our language effect is not insensitive to topic. Unlike those items where gender is clearly implicated, we find that here, interviewing in Estonian has no reliable influence on whether one deems suicide to be justifiable (0.15, \(p > 0.30 \), one-tailed)—a domain we hardly see as evoking gender distinctions. Moreover, this test suggests that speaking Estonian does not simply prompt people to give more liberal answers.

All in all, Study 2’s results corroborate and extend those in Study 1. We find that speaking a genderless language causes more support for gender equality; that this effect is dampened by social norms; and that this language effect arises only in domains that evoke gender distinctions. Taken together, these results strongly suggest that differences in grammatical gender across languages cause shifts in speakers’ attitudes toward gender equality.

Study 3: Cross-National Evidence of Language Effects

We designed our experiments to detect language’s causal effects, thereby achieving a high degree of internal validity. But this also restricted us to one specific context, which leads our experiments to attain a relatively low degree of external validity. The goal of Study 3, then, was to explore whether genderless languages are associated with more gender-balanced attitudes in

\(^1\) The difference between these effects is statistically significant.
contexts beyond Estonia (cf. Hicks et al. 2015; Prewitt-Freilino et al. 2009; Santacreu-Vasut et al. 2013; Santacreu-Vasut et al. 2014). To this end, we used the World Values Survey (WVS), waves 3-6 (1995-2014), to conduct a cross-national analysis of language effects that spans about 90 countries and, depending on the model, up to 170,000 individuals. These extensive survey data furnish us an unrivaled opportunity to replicate our main experimental findings in a global context.

We rely on the following four items to reassess our experimental results: (1) *Women jobs* is a binary variable coded “1” if the respondent disagrees that “when jobs are scarce, men should have more right to a job than women,” and “0” otherwise; (2) *Women political leaders* inquired whether respondents strongly agreed (4), agreed (3), disagreed (2) or strongly disagreed (1) with the statement that “on the whole, men make better political leaders than women do;” (3) *University for girls* uses a similar 4-point scale to measure respondent’s agreement with the statement that “university more important for a boy than for a girl;” (4) *Women business executives*, again, uses a similar 4-point scale to measure respondent’s agreement with the statement that “on the whole, men make better business executives than women do.”

These items parallel the main outcomes in Studies 1 and 2 and therefore serve as appropriate measures to validate our experimental results. For all of these variables, higher values indicate more gender-equal responses. Since responses to these items are highly

19 Earlier waves of WVS do not include information about the language spoken at home, which we need to perform our analysis of language effects.

20 Furthermore, the first three items are included in all of the WVS waves covered in our study; the last item is included in waves 5 and 6. Collectively, these are the gender items that have the best coverage across the different waves of WVS.
correlated ($\alpha = 0.74$), we also scale them to produce the variable *Gender equal attitudes*, where higher values indicate more gender-balanced responses. This index serves as the fifth dependent variable in the analyses reported below.

We rely on the question “What language do you normally speak at home?” to identify respondent’s language. In order to measure the genderedness of the language spoken at home, we utilize data from the *World Atlas of Language Structures* (WALS) (Dryer and Haspelmath 2013), the most comprehensive data source on language structures. The indicator of gender intensity of a language that has the best coverage is one that relies on “gender distinctions in independent personal pronouns.” Following prior work (Santacreu-Vasut et al. 2013), we use this indicator from WALS and code it into a binary variable, which equals “0” for the gendered languages, i.e., those that make gender distinctions in third-person pronouns and in the first and/or the second person. All other languages are coded as *Genderless languages* and keyed as “1” otherwise.\(^{21}\)

Our analyses also include a number of covariates to assess the robustness of any language influence we uncover. We include a country-level control for a nation’s level of democracy (*Democracy*), as well as individual-level controls for education (*Education*), income (*Income*), unemployment status (*Unemployed*), marital status (*Married*), gender (*Sex*), and age (*Age*).\(^{22}\) All of our models also include fixed effects for survey waves. Furthermore, in at least one third of the countries included in our analysis, some respondents speak at home a gendered tongue, while

\(^{21}\) This coding scheme contrasts strongly gendered languages with the weakly gendered and genderless ones. Our results also hold when we use a more nuanced coding with three categories of languages: genderless (2), weakly gendered (1), and strongly gendered (0). The details on this alternative measure and the corresponding robustness tests are presented in SI 7.

\(^{22}\) The details on these measures are presented in SI.7.
others speak a genderless language. Hence, we also include country-fixed effects and use within-country variance to better identify language’s influence. All models use robust standard errors clustered on country.

Results from Study 3

The results from this cross-national analysis are presented in Table 3. The first model under each dependent variable reports our most basic finding: the coefficient on *Genderless language* captures the average difference in people’s propensity to express gender-equal attitudes between speakers of gendered and genderless languages. The coefficient is correctly signed and statistically significant, such that individuals who speak a genderless language are more likely to express gender-equal attitudes. Note that these models include country fixed effects. Thus, even individuals living in the same country express reliably different attitudes about gender equality depending on whether they speak a gendered or genderless language at home. This result closely mirrors our main experimental findings.

This basic pattern is robust to individual- and country-level controls (the second model under each dependent variable). In the OLS models, the coefficients run from a low of 0.12 to a high of 0.32, which imply shifts of about 3% to 8% in those dependent variables. In the logit model (DV=Women jobs), the implied language effect is substantively larger. There, a respondent who reports speaking a genderless language at home is about 60% more likely to disagree with this statement than a respondent who reports speaking a gendered language. These type of findings are consistent with cross-national non-survey analyses suggesting that countries that use genderless tongues experience greater levels of gender disparities in society (Prewitt-Freilino et al. 2009).
In sum, our cross-national analysis corroborates our experimental results. We interpret this as remarkable evidence of the strength and robustness of our argument about the effect of language on attitudes toward gender equality. Even though an observational analysis of survey data is not equivalent to a tightly controlled experiment, the fact that we were able to replicate our basic finding in different research contexts, with different kinds of individuals and dependent variables, and a different operationalization of relevant language nuances, bolsters the external validity and generalizability of our experimental results.

Summary and Implications

We have argued that speaking a genderless tongue leads people to de-emphasize gender distinctions in one’s perceptual ken. Because of this, speakers of genderless tongues find it harder to sense a “natural” asymmetry between men and women, which leads them to be more supportive of efforts to address gender inequality. We tested this proposition in three independent studies. In the first one, we manipulated whether bilinguals interviewed in a genderless or gendered tongue, thus allowing us to isolate our proposed mechanism (grammatical gender). Using this design, we find that those assigned to interview in a genderless language are significantly less likely to view women in a stereotypical way and significantly more likely to support efforts to increase gender equality. The boost in the probability of support triggered by interviewing in a genderless language ranges between five to eight percentage points. These results do not appear to be chance occurrences, for we successfully replicated them in Study 2, which used the same type of experimental design in a fresh sample of bilingual respondents.

We also established an important boundary condition to our proposed effect: speaking a genderless tongue has trivial effects on one’s opinions about gender inequality when the domain
in question is attended by clearer social norms about appropriate behavior. Such norms provide additional information that plug mental gaps that would otherwise be filled by one’s tongue. We further established that the effects of speaking genderless language fail to emerge in domains that do not evoke gender distinctions – a result that further validates our causal claim. Finally, we demonstrated the external validity of our language effects through an extensive cross-national analysis of survey data, finding that speakers of genderless languages hold more liberal political attitudes toward gender equality than speakers of gendered languages. Combined, these experimental and observational results paint a clear picture of language’s political relevance.

By highlighting language differences in support for efforts to reduce gender inequality, we also help to illuminate its persistence. Our findings reveal that some people cannot be more supportive of efforts to more fully reach this goal simply because of the language they speak. In this way, we have shown that language can operate as a ceiling to some of the beneficial trends for gender equality unleashed by higher socio-economic development (e.g., flexible family leave policy).

Of course, if something so fundamental as the language spoken by people can color their views of gender equality, then what is there to do—besides throwing up one’s arms—about the kinds of differences we have detected between gendered and non-gendered languages? We believe that the boundary condition we established offers a potential solution. Recall that language has a negligible effect on people’s views about gender equality when norms about appropriate behavior are clear and strong. This insight opens the door to social pressure, more generally, as a possible moderator of the types of language effects we have reported. Furthermore, our results lend at least some credence to the efforts of adopting gender-neutral terms in different languages. Such efforts, our result suggest, amount to more than just window-
dressing or “political correctness.” Rather, they can have real consequences to how salient
gender categories are for the speakers and, as a result, to their attitudes about gender equality.

In the end, we have peeled back a layer of people’s minds to show how the language one
speaks can influence what one sees, and fails to see, when it comes to equality between men and
women. Language, we have learned, is a key contributor to why we might still see gender
inequality where more progress is expected. As such, our theoretical framework is psychological,
through and through. It therefore only illuminates the deep corners of people’s minds. But those
recesses are important, our results suggest, because simple quirks in language can affect how
mentally receptive people can be to an even more equitable balance between men and women.
References

Table 1. The Effect of Genderless Language on Opinions Toward Gender Equality (Study 1)

<table>
<thead>
<tr>
<th></th>
<th>Model 1: Emotional women: relative rating (OLS)</th>
<th>Model 2: Paternity Leave (Probit)</th>
<th>Model 3: Female Defense Minister (Probit)</th>
<th>Model 4: Female political recruitment (Ordered Probit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estonian interview</td>
<td>-0.20* (0.12)</td>
<td>0.21** (0.08)</td>
<td>0.22** (0.08)</td>
<td>0.14** (0.06)</td>
</tr>
<tr>
<td>Constant</td>
<td>1.34*** (0.09)</td>
<td>-0.38*** (0.05)</td>
<td>0.40*** (0.05)</td>
<td>---</td>
</tr>
<tr>
<td>N</td>
<td>1,153</td>
<td>1,140</td>
<td>1,156</td>
<td>1,154</td>
</tr>
</tbody>
</table>

Note: Dependent variables are indicated in column headings. ***p < 0.01, **p < 0.05, *p < 0.10, two-tailed tests.
Figure 1. Probability of Support for Political Efforts Addressing Gender Inequality

A. Change in Paternity Leave Policy

B. Female Defense Minister nominee

C. Increase female political recruitment
Figure 2. Boundary Condition: Language Effects Are Less Likely When Social Norms Clearly Imply Appropriate Behavior

A. Buying sex made illegal

B. Child suffers if mother works

C. Hit husband sometimes justified

D. Men are better political leaders
Table 2. The Effect of Genderless Language on Opinions Toward Gender Equality (Study 2)

<table>
<thead>
<tr>
<th></th>
<th>Replication</th>
<th>Social Norms Experiment</th>
<th>Placebo Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model 1:</td>
<td>Model 2:</td>
<td>Model 5:</td>
</tr>
<tr>
<td></td>
<td>Paternity Leave</td>
<td>Female Defense Minister</td>
<td>Run for office—no norm</td>
</tr>
<tr>
<td></td>
<td>(Probit)</td>
<td>(Probit)</td>
<td>(Ordered probit)</td>
</tr>
<tr>
<td>Estonian interview</td>
<td>0.41**</td>
<td>0.26*</td>
<td>0.36**</td>
</tr>
<tr>
<td></td>
<td>(0.16)</td>
<td>(0.19)</td>
<td>(0.21)</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.20</td>
<td>0.74**</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>(0.11)</td>
<td>(0.12)</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>251</td>
<td>248</td>
<td>253</td>
</tr>
</tbody>
</table>

Note: Dependent variables are indicated in column headings. **p<0.05, *p<0.10, one-tailed tests.
Table 3. The Effect of Genderless Language on Opinions Toward Gender Equality, World Values Survey 1995-2014 (Study 3)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Genderless</td>
<td>0.204***</td>
<td>0.181***</td>
<td>0.324***</td>
<td>0.321***</td>
<td>0.149**</td>
</tr>
<tr>
<td>language</td>
<td>(0.046)</td>
<td>(0.067)</td>
<td>(0.111)</td>
<td>(0.100)</td>
<td>(0.057)</td>
</tr>
<tr>
<td>Sex</td>
<td>0.281***</td>
<td>0.232***</td>
<td>0.323***</td>
<td>0.551***</td>
<td>0.357***</td>
</tr>
<tr>
<td>(0.014)</td>
<td>(0.018)</td>
<td>(0.022)</td>
<td>(0.041)</td>
<td>(0.024)</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>-0.002***</td>
<td>-0.002***</td>
<td>-0.002***</td>
<td>0.007***</td>
<td>-0.002***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.001)</td>
<td>(0.002)</td>
<td>(0.001)</td>
<td></td>
</tr>
<tr>
<td>Unemployed</td>
<td>0.025**</td>
<td>-0.027***</td>
<td>0.014</td>
<td>0.075**</td>
<td>-0.001</td>
</tr>
<tr>
<td>(0.011)</td>
<td>(0.010)</td>
<td>(0.014)</td>
<td>(0.035)</td>
<td>(0.015)</td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>-0.025***</td>
<td>-0.008</td>
<td>-0.014</td>
<td>-0.152***</td>
<td>-0.030***</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.008)</td>
<td>(0.010)</td>
<td>(0.031)</td>
<td></td>
</tr>
<tr>
<td>Democracy</td>
<td>0.002</td>
<td>0.009</td>
<td>0.005</td>
<td>0.010</td>
<td>-0.017</td>
</tr>
<tr>
<td></td>
<td>(0.009)</td>
<td>(0.010)</td>
<td>(0.017)</td>
<td>(0.014)</td>
<td></td>
</tr>
<tr>
<td>Country FE</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Wave FE</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Education</td>
<td>YES</td>
<td></td>
<td>YES</td>
<td>YES</td>
<td>analysing</td>
</tr>
<tr>
<td>Income</td>
<td>YES</td>
<td></td>
<td>YES</td>
<td>YES</td>
<td>analysing</td>
</tr>
<tr>
<td>Constant</td>
<td>2.173***</td>
<td>2.252***</td>
<td>2.656***</td>
<td>2.506***</td>
<td>2.584***</td>
</tr>
<tr>
<td></td>
<td>(0.041)</td>
<td>(0.082)</td>
<td>(0.067)</td>
<td>(0.037)</td>
<td>(0.099)</td>
</tr>
<tr>
<td>N</td>
<td>168,903</td>
<td>135,827</td>
<td>172,828</td>
<td>138,761</td>
<td>100,373</td>
</tr>
<tr>
<td>N (countries)</td>
<td>90</td>
<td>84</td>
<td>90</td>
<td>84</td>
<td>75</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.004</td>
<td>0.041</td>
<td>0.005</td>
<td>0.040</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Note: Dependent variables are indicated in column headings. Robust country-clustered standard errors in parentheses. ***p<0.01, **p<0.05, *p<0.1