Microelectrode Array

October 9, 2012

Site-Selective Chemistry and the Attachment of Peptides to the Surface of a Microelectrode Array

Melissae Stuart Fellet, Jennifer L. Bartels, Bo Bi, and Kevin D. Moeller

J. Am. Chem. Soc., 2012, 134 (40), pp 16891–16898

Peptides have been site-selectively placed on microelectrode arrays with the use of both thiol-based conjugate additions and Cu(I)-coupling reactions between thiols and aryl halides. The conjugate addition reactions used both acrylate and maleimide Michael acceptors. Of the two methods, the Cu(I)-coupling reactions proved far superior because of their irreversibility. Surfaces constructed with the conjugate addition chemistry were not stable at neutral pHs, especially the surface using the maleimide acceptor. Once a peptide was placed onto the array, it could be monitored in “real-time” for its interactions with a biological receptor.


January 20, 2012

Building Addressable Libraries: Amino Acid Derived Fluorescent Linkers

Takamasa Tanabe, Bo Bi, Libo Hu, Karl Maurer, and Kevin D. Moeller

Langmuir, 2012, 28 (3), 1689-1693

A new amino acid derived fluorescent linker for attaching molecules to the surface of a microelectrode array has been developed. Molecules to be monitored on an array are attached to the C-terminus of the linker, the N-terminus is then used to attach the linker to the array, and the side chain is used to synthesize a fluorescent tag. The fluorescent group is made with a one-step oxidative cycloaddition reaction starting from a hydroxyindole group. The linker is compatible with site-selective Cu(I)-chemistry on the array, it allows for quality control assessment of the array itself, and it is compatible with the electrochemical impedance experiments used to monitor binding events on the surface of the array.


January 20, 2011

Site-Selectively Functionalizing Microelectrode Arrays: The Use of Cu(I)-Catalysts

Jennifer Bartels, Peng Lu, Karl Maurer, Amy V. Walker, and Kevin D. Moeller

Langmuir, 2011, 27 (17), pp 11199–11205

Site-selective Cu(I)-catalyzed reactions have been developed on microelectrode arrays. The reactions are confined to preselected electrodes on the arrays using oxygen as the confining agent. Conditions initially developed for the Cu(I)-catalyzed click reaction have proven general for the coupling of amine, alcohol, and sulfur nucleophiles to both vinyl and aryl iodides. Differences between reactions run on 1-K arrays and reactions run on 12-K arrays can be attributed to the 1-K array reactions being divided cell electrolyses and the 12-K array reactions being undivided cell electrolyses. Reactions on the 12-K arrays benefit from the use of a non-sugar-derived porous reaction layer for the attachment of substrates to the surface of the electrodes. The reactions are sensitive to the nature of the ligand used for the Cu catalyst.